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a b s t r a c t

Masonry walls are very sensitive to flexural effects due to low tensile strength which, in turn, greatly
influences the load bearing capacity under compression. The main source of flexural effects may results
from the eccentric loading at the ends of the wall or from any lateral loading like the wind action, the
earth pressure, or the second order effect of the applied actions. Several analytical solutions were
proposed in literature to solve the differential equation of the problem, but those solutions were limited
to special conditions. In the current contribution, a general formulation for the non-linear stability
problem has been formulated numerically based on the transfer-matrix method. Despite the method is
out of professional use today and don’t possess the potential and flexibility of the finite elements but
for the current addressed problem, it is still the most efficient.
A relative form description has been introduced to formulate the stability theory of masonry walls. This

description has been used to minimize the dimensions of matrixes in the transfer-matrix method and to
produce the equations in a compact form. The algorithms of the method have been derived for general
boundary and loading conditions with a user-defined non-linear material model. Algorithms and solution
procedures have been explained and implemented into a computer code. The convergence of the iterative
solution has been studied with clear definition for the cases at which the stability or material failures
occur. The results of the developed solution procedure have been validated by comparing them with
the existing solutions and the experimental results. The developed solution procedure provides a power-
ful tool to solve a wide range of problems related to stability of masonry walls and to check the existing
empirical methods.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The load bearing capacity of a masonry wall is influenced by the
eccentricity of load and slenderness ratio, which in turn depends
on the geometry, the stiffness of the cross-section, the boundary
conditions, and the existence of any lateral load. Masonry walls
may have different positions and functions in the structure which
might be subjected to a different type of loading and boundary
conditions (Fig. 1).

It is more appropriate for practical use and standards to
describe the influence of these factors using a capacity reduction
factor U for the compressive strength allowing the actual condi-
tions. Since masonry material has low tensile strength, the wall
may crack under certain conditions leading to further complica-
tions due to the reduction in the effective cross-section. Masonry
members under compression might fail either because of material
overstressing for squat members or because of stability failure for

slender members. For squat masonry members, the failure takes
place if the compressive strain at any cross-section reached the
ultimate compressive strain of the material. Nevertheless, for
slender masonry elements the failure occurs before reaching the
ultimate compressive strain of the material at any cross-section.
The former mode of failure is called material failure and the latter
is called stability failure. Both failure modes are going to play a
crucial role in the determination of the capacity reduction factor.

2. Stability theory of masonry walls

2.1. Background

A masonry wall of height h and thickness t is considered. The
wall is subjected to an eccentric compressive load N with
eccentricity e0 at both top and bottom ends. A strip length of the
wall equal to 1 is considered assuming that the load is uniformly
distributed over the length of the wall. The wall assumed to be
freely rotating on the upper and lower edges (pinned–pinned
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model) and not supported at the side edges (or it has enough length
so that the effect of the side edges boundary conditions can be
ignored). Fig. 2 shows the schematic configuration of the wall
model which is going to be used to study the buckling of masonry.

The scope of this theory is slender masonry walls h=t P 3. The
deformations due to shear have been ignored so that Euler–Ber-
noulli theory of slender beams can be applied. In Euler–Bernoulli
beam theory, the cross-section that is perpendicular to the normal
axis of the beam remains plane after bending. That is, no deforma-
tions occur in the plane of the cross-section.

2.2. The curvature of deformation

Based on Euler–Bernoulli hypothesis of plane sections the cur-
vature j of the beam at distance y is given by:

j ¼ 1
.
¼ �

d2e
dy2

1þ de
dy

� �3
2
; ð1Þ

where . the radius of curvature of deformation, e is the total eccen-
tricity of the load which is the sum of the eccentricity due to the
first order effect eI and second order effect eII:

e ¼ eI þ eII: ð2Þ
For small bending deformations, the curvature of deformation

can be approximated simply as following:

j ¼ � d2e

dy2
: ð3Þ

2.3. Equilibrium and compatibility equations

Masonry is an anisotropic material with low or no tensile
strength in comparison to its compression strength. This makes
masonry very sensitive to the flexural deformations. It is important
to consider the state of damage due to cracking of the cross-
section. In Fig. 2 the stress distribution has been plotted on two
sections: the first one is uncracked section and the second one is
cracked section.

The stress and strain state under flexural deformation in both
cross-sections of the wall has been considered. The stress/strain

state at both cross-sections is going to be used to write the equilib-
rium equations considering the notations defined in Fig. 3.

From the equilibrium equations, the normal force N and the
bending moment M can be obtained by integrating the stresses
over the area of the cross section:

N ¼
Z
A
r � dAw and M ¼ �

Z
A
r � z � dAw; ð4Þ

Fig. 1. The bar idealization of masonry wall with the acting loads and boundary
conditions.

Fig. 2. Schematic drawing of the deformation of a masonry wall due to second
order effect.

(a) uncracked section (b) cracked section 

Fig. 3. The stress and strain state in the cross section of masonry wall under flexural
deformation.
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