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a b s t r a c t

In the conventional formulation of the Timoshenko beam theory bending and shear deflection cannot be
determined uniquely. Recently, an alternative formulation which deals with total deflection and bending
deflection has been developed with unique results. In the present paper a new beam theory, taking cou-
pling between flexural and in-plane shear vibrations into account, is derived by employing Hamilton’s
principle. First, uncoupled flexural and in-plane shear vibrations are considered. Then, coupling of vibra-
tions, manifested in the case of geometric boundary conditions, is realized in a physically transparent
way. Accuracy is confirmed by 2D FEM vibration analysis of illustrative examples. The proposed formu-
lation is superior to the known first order shear deformation beam theories.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Beam is a constitutive structural element in many engineering
structures. For slender beam the Euler–Bernoulli theory is usually
used, but for thick beam the Timoshenko beam theory is preferable
since it takes in addition both shear and rotary inertia into account
[1,2]. The theory is a simplification of real beam behavior, with lin-
ear approximation of the parabolic shear stress distribution across
beam cross-section. Shear effect is taken into account by shear coef-
ficient as relation parameter between shear stress and shear strain.

General beam theories are developed, where beams are sub-
jected to bending, torsion and tension, with shear influence on
deflection and stresses. Three recently published books give a good
reviewof those theories [3–5]. Complex problemof coupled flexural
and torsional vibrations of beam-like structures as ship hull with
multi-cell cross-section and variable properties is presented in [6,7].

In order to achieve a realistic beam behavior many higher-order
shear deformation theories have been developed, assuming curvi-
linear beam cross-section deformation for instance [8,9]. However,
great efforts resulted with small effect on accuracy, and therefore
the first order shear deformation theory is still in practical use. It
is subject of many investigations in order to increase its efficiency.

In ordinary beam static analysis, bending and shear deflection
are treated as two basic physical quantities. Total deflection is
obtained by summing up bending and shear deflection. In case of
clamped and combined clamped and simply supported end,

bending and shear deflection do not satisfy boundary condition
individually, while the total deflection does. Based on expected
physical reality, each of beam deflection should satisfy geometric
boundary conditions. This problem is not recognized in the
Timoshenko beam theory [10]. Actually, it is discussed by Donnel
[11], but it is ignored as an effect of rigid body motion.

In vibration analysis by the Timoshenko beam theory bending
and shear deflection cannot be determined uniquely. Therefore, a
few improved theories have been developed. For instance, bending
and shear deflection are determined independently in [12], and
total deflection is obtained as their summation. Governing differen-
tial equations and boundary conditions are successfully derived in
[13] by employing Hamilton’s principle. However, both differential
equations and boundary conditions are the sameas those in the con-
ventional theory. Hence, there is no a new achievement in this case.

Recently, an alternative formulation of the boundary value prob-
lem for the Timoshenko beam has been proposed [14,15]. Bending
and shear deflection are adopted as independent physical entities.
Total deflection and bending deflection, which causes cross-
section rotation, are chosen as basic variables. In such a way bend-
ing and shear deflection are uniquely determined. This theory gives
somewhat higher values of natural frequencies in case of geometric
boundary conditions. However, reliability of the obtained results is
not checked by a more sophisticated approach. There is doubt
should all three deflections, i.e. total, bending and shear, and
cross-section rotation be constrained, since in a physical model test
only visual beam displacements, i.e. total deflection and cross-
section rotation can be fixed. Bending and shear deflection are
internal quantities which actually cannot be influenced by outside.
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Motivated by the above state-of-the art in this paper an exten-
sive investigation of beam dynamic behavior is undertaken as a
continuation of the authors’ earlier paper [16]. New concept of dis-
placements and sectional forces is introduced. Additionally to the
flexural parameters, in-plane shear cross-section rotation and cor-
responding moment are taken into account. Coupling phenomenon
between flexural and in-plane shear vibrations is recognized in
case of geometric boundary conditions. The obtained results are
checked by 2D FEM vibration analysis.

2. Outline of the classical beam theory

Traditional Timoshenko beam theory deals with beam deflec-
tion and cross-section rotation, w and w, respectively, Fig. 1,
[1,2]. The sectional forces, i.e. bending moment and shear force,
read

M ¼ �D
@w
@x

; Q ¼ S
@w
@x

� w

� �
; ð1Þ

where D ¼ EI is flexural rigidity and S ¼ kGA is shear rigidity, A is
cross-section area and I is its moment of inertia, k is shear coeffi-
cient, and E and G ¼ E=½2ð1þ mÞ� is Young’s modulus and shear mod-
ulus, respectively.

Beam is loaded with transverse inertia load per unit length and
distributed inertia moment
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where m ¼ qA is specific mass per unit length and J ¼ qI is its
moment of inertia.

Beam strain energy and kinetic energy are the following:
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The governing equilibrium equations and boundary conditions
can be derived by employing Hamilton’s principle

d
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ðK � UÞdt ¼ 0; ð4Þ

where d denotes variation. Hence, one obtains
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The second of Eqs. (5) yields
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By substituting (7) into the first of (5) one arrives at [17]
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Once (8) is solved rotation angle is determined from (7)
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dxþ f ðtÞ; ð9Þ

where f ðtÞ is a rigid body rotational motion.

3. New beam theory

The traditionally used Timoshenko beam theory deals with two
visible beam displacements, i.e. deflection w and cross-section
rotation w. Since shear is present, it is obvious that total deflection
consists of bending deflection and shear deflection, wb and ws,
respectively. They are not visible, but can be constructed based
on the known w and w.

In the new beam theory it is assumed that cross-section rota-
tion includes bending angle, u, and possible in-plane shear angle,
#. If # is uniform along the beam, that associates on sheared set
of playing cards. Hence, according to Fig. 2a, one can write for
the total displacements

w ¼ wb þws;

w ¼ uþ #; u ¼ @wb

@x
;

l ¼ uþ k; k ¼ @ws

@x
;

ð10Þ

where k is shear angle and l is rotation of beam neutral axis.
Distributed transverse load qx acting on a beam causes bending

and transverse shear with sectional bending moment, Mb ¼ �Dw00
b,

and shear force, Qs ¼ Sw0
s, Fig. 2b. Distributed rotary load mx also

causes bending and shear, with corresponding bending moment,
M� ¼ �Dw�00

b , and shear force, Q � ¼ Sw�0
s . Some elementary static

examples are presented in [4,18].
In case of a very short and high beam, like membrane with large

aspect ratio h/l, in-plane shear deformation occurs and it is domi-
nant. The corresponding moment reads M� ¼ �D#0, where # is in-
plane shear angle, Fig. 2c. This problem is recognized in beam
higher natural modes where each segment between adjacent
vibration nodes represents actually a short beam.

In accordance with the above consideration the total sectional
forces read
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where Q � ¼ �S# can be interpreted as shear force due to in-plane
shear, for the time being, Fig. 2c.

Strain and kinetic energy of the considered beam are the
following
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Fig. 1. Classical concept of beam displacements and sectional forces.
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