
Efficient method for probabilistic finite element analysis
with application to reinforced concrete slabs

Georgios P. Balomenos ⇑, Aikaterini S. Genikomsou, Maria Anna Polak, Mahesh D. Pandey
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

a r t i c l e i n f o

Article history:
Received 5 May 2015
Revised 27 August 2015
Accepted 30 August 2015
Available online 14 September 2015

Keywords:
Probabilistic finite element analysis
Sensitivity analysis
Multiplicative dimensional reduction
method
Monte Carlo simulation
Reinforced concrete slabs
ABAQUS

a b s t r a c t

In this paper, probabilistic finite element analysis (FEA) is applied using the Monte Carlo simulation
(MCS) and the multiplicative dimensional reduction method (M-DRM). M-DRM is proposed for stochastic
FEA of large scale and/or complex problems, as it provides the probability distribution of the structural
response, apart the statistical moments, and requires fairly small computational time. MCS and
M-DRM results are compared, indicating that both are in a good agreement. In addition, sensitivity
analysis is also performed using the M-DRM, which does not require any extra analytical effort. The
probabilistic FEA is applied with the use of the ABAQUS software, where the development of the FEA
model and the updating of each input random variable for the required simulations, are both
implemented with the use of the Python programing language. Two previously tested reinforced concrete
flat slabs, with and without shear reinforcement, are examined. The concrete damaged plasticity model is
used for the modeling of the concrete, which is offered in ABAQUS. The results of the deterministic FEA
simulation show reasonable response compared to the behavior of the test specimens in terms of
ultimate load, deflection and cracking propagation. For the probabilistic analysis, only the material
uncertainty is taken into account, in order to examine the accuracy and efficiency of the proposed
M-DRM framework and the contribution of the material uncertainty to the output response. Finally,
design codes (ACI 318-11 and EC2 2004) for punching shear and the critical shear crack theory
(CSCT 2008, 2009) are examined, considering the same input uncertainties. Useful outcomes are
presented indicating the predictive capability of the proposed probabilistic FEA for future studies.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element method (FEM) is the numerical approach which
is used to solve approximately partial differential equations and
finite element analysis (FEA) is the computational technique which
is used in engineering in order to obtain approximate solutions of
boundary value problems [1]. As a result, FEA is used to predict the
structural response using numerical techniques to simulate the lin-
ear and/or nonlinear behavior of structural elements [2]. However,
FEA predictions can be performed in a probabilistic sense due to
unavoidable uncertainties in material, load parameters, modeling,
etc. [3]. Therefore, FEA should be coupled with reliability analysis,
often termed as finite element reliability analysis (FERA) [3] or
stochastic finite element analysis (SFEA) [4].

In SFEA the input parameters are characterized as random vari-
ables and techniques such as the Monte Carlo simulation (MCS)
can be used, in order to compute the statistical moments of struc-
tural response and the probability of structural response exceeding
a safety threshold. In probabilistic FEA of large scale structures the
following issues need to be addressed: (1) minimizing the number
of FEA trials, especially when the deterministic analysis of the
model is time consuming, (2) estimating accurately the probability
distribution of the structural response, especially in FEA where the
structural response function is in an implicit form, (3) connecting a
general FEA software with uncertainty, especially when knowledge
on advanced programing languages is required.

In order to apply probabilistic FEA, it is required to link a gen-
eral purpose FEA program, e.g., ABAQUS, with an existing reliability
platform, e.g., NESSUS [5] or ISIGHT [6], where more information
regarding the connection between FEA software and structural
reliability can be found in literature [7]. Another option is to use
general-purpose and high-level programing languages. For exam-
ple, Python development environment (PDE) is supported from
ABAQUS graphical user interface (GUI). Thus, in the present work,
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Python code is developed in order to automate the required FEA
trails, needed by the MCS and the proposed multiplicative dimen-
sional reduction method (M-DRM).

Firstly, is shown how M-DRM provides the statistical moments,
such as mean and variance, and the probability distribution of the
structural response, requiring fairly small computational cost. The
sensitivity analysis is also presented, where the sensitivity coeffi-
cients are obtained as a by-product of the M-DRM analysis. Then,
the parameter updating idea in each simulation is adopted for
the implementation of MCS in ABAQUS using Python programing
language. M-DRM using the Gauss scheme also adopts the param-
eter updating idea in each trial and is automated in ABAQUS using
Python programing. These two methods (M-DRM, MCS) are used
for the probabilistic FEA of two interior reinforced concrete flat
slabs. Prior to probabilistic analysis, deterministic nonlinear FEA
is conducted using the concrete damaged plasticity model, in order
to predict the structural behavior accurately. It is shown that M-
DRM can overcome probabilistic FEA limitations efficiently, mak-
ing it an easy to use technique. Then, is investigated how uncer-
tainty, associated with the model’s input parameters, impacts the
structural response of the analyzed interior flat slabs. Comparison
between the two slabs (shear unreinforced and shear reinforced) is
performed based on the calculated load capacity of the slabs. Prob-
abilistic analysis using design codes (ACI 318-11, EC2 2004) and a
punching shear model (CSCT 2008, 2009) are critically compared to
the probabilistic FEA results.

2. Multiplicative dimensional reduction method (M-DRM)

2.1. Background

In structural reliability analysis, the response can be modeled as
a function of several input random variables [8]. For instance,
punching shear strength is the output variable of interest when
evaluating the capacity of a flat slab, which can be calculated as
a function of input random variables such as the strength of con-
crete, the effective depth of slab, etc., as

Y ¼ h xð Þ ð1Þ
where Y is a scalar response and x is a vector of input random vari-
ables, i.e., x ¼ x1; x2; . . . ; xn.

If we know the probability distribution of all variables x, then
we can calculate the probability of failure as

pf ¼ p yc � h xð Þ 6 0ð Þ ð2Þ
where pf is the probability of failure and yc is a critical threshold,
where each response larger than this threshold leads to a structural
failure. For simplicity, the probability of failure can be further
described by the following integral [9]

pf ¼
Z

g xð Þ60f g
f x xð Þdx ð3Þ

where f x xð Þ is the joint Probability Density Function (PDF) of the
previously defined vector x; g xð Þ 6 0f g represents the failure
domain and g xð Þ ¼ yc � h xð Þ represents the performance function.

The above integral can be computed using [10]; (1) Direct inte-
gration, but the joint PDF is hardly available for real problems as it
is defined implicitly in a finite element model; (2) Simulations,
such as Monte Carlo simulation (MCS), but this method usually
requires considerable computational time for a nonlinear finite ele-
ment model; (3) Approximate methods, such as first order reliabil-
ity method (FORM), but requires iterations which may give
inaccurate solutions due to the nonlinearity of the limit state func-
tion of the finite element model.

Anotheroption is touse themultiplicativedimensional reduction
method(M-DRM),as it requires little computational costandno iter-
ations. M-DRM provides the probability distribution of response
fromwhichwecancalculate theprobabilityof exceedance, i.e., prob-
ability of failure, as shown in next sections. In literature [11–13],
additive dimensional reduction method (A-DRM) has been used to
approximate the response function in an additive form as

Y ¼ h xð Þ �
Xn
i¼1

hi xið Þ � n� 1ð Þh0 ð4Þ

A-DRM is not practical for the computation of fractional moments
[14] while M-DRM has the benefit to simplify the evaluation of both
integer and fractional moments of the response [15]. Using logarith-
mic transformation on Eq. (4), M-DRM approximates the response
function in a multiplicative form as

Y ¼ h xð Þ � hð1�nÞ
0 �

Yn
i¼1

hi xið Þ ð5Þ

Notation

As cross-section area of reinforcement
Es modulus of elasticity of reinforcement
Gf fracture energy
H f½ � entropy of the response
Mai

Y fractional moment of the response
Si primary sensitivity coefficient of each input random

variable
VY variance of the response
Y response
f 0c compressive strength of concrete
f 0t tensile strength of concrete
f y yield strength of reinforcement
f Y ðyÞ actual distribution of the response
f̂ Y ðyÞ estimated distribution of the response
hi xj
� �

response of the ith cut function when it is set at the jth
Gauss quadrature point

h0 response when all input random variables are set equal
to their mean values

pf probability of failure

wj Gauss quadrature weights
xj Gauss quadrature coordinates for each input random

variable
zj Gauss quadrature coordinates
ai fractional exponents of an ith fractional moment

i ¼ 1;2; . . . ;mð Þ
cc density of concrete
cs density of reinforcement
hi mean square of an ith cut function i ¼ 1;2; . . . ;nð Þ
ki Lagrange multipliers of an ith fractional moment

i ¼ 1;2; . . . ;mð Þ
l mean of each input random variable
m Poisson’s ratio
lY mean of the response
l2Y mean square of the response
qi mean of an ith cut function i ¼ 1;2; . . . ;nð Þ
r standard deviation of each input random variable
rY standard deviation of the response
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