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a b s t r a c t

This paper describes a procedure for estimating the nonlinear ultimate load carrying capacity of
continuous beams using a combination of linear elastic influence lines for segments of the beam in
appropriately selected damaged configurations. The method extends the use of influence lines beyond
the elastic limits while preserving their inherent efficiency and accuracy. The approach is validated by
comparing it to numerical results obtained through structural nonlinear analysis software and other
analytical solutions. A main advantage of the method is its ability to determine the most critical locations
for placing multiple point loads that cause the beam’s plastic failure. This method may be of practical
interest in structural and bridge engineering when numerous nonlinear analyses are required to estimate
the ultimate capacity of structures that may be subject to moving loads.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of nonlinear analysis models in structural engineering
is becoming more common in professional practice that aims to
obtain more accurate estimates of the ultimate load carrying
capacities of new and existing structures. This trend is accelerating
due to the widespread availability of computer programs that can
efficiently and accurately obtain numerical solutions to complex
structural systems [15]. Although any type of structure can be
analyzed using proper three-dimensional (3D) nonlinear finite
element methods, the simplicity of beam theory makes it an
important tool for application in civil, structural, and mechanical
engineering. In this context, when dealing with the nonlinear
behavior of beam structures, it is necessary to include plasticity
and nonlinear damage in the beam model [10]. The plastic
behavior of beams is usually accounted for through two types of
nonlinear modeling techniques. The first approach applies lumped
plastic hinges at specific sections of the beams where the plastic
behavior is assumed to be concentrated [11,2], while the other
method adopts distributed plastic fibers along the members [14].
The mathematical formulation of the concentrated plastic hinge
method is simpler than the distributed plasticity model which
explains why the former has been more commonly applied in
structural engineering practice [1,3].

While applications of nonlinear beam and frame analysis are
widely available for different applications, its use for the nonlinear
analysis of bridges subjected to moving traffic load is gaining
popularity due to current attempts to obtain more accurate
estimates of the load carrying capacity of bridge systems by
considering their ultimate capacities, structural redundancy and
robustness [6,7,13].

When performing the nonlinear analysis of bridges under the
effect of moving loads, engineers have traditionally located the
critical position of the moving loads based on a linear elastic anal-
ysis by often using classical influence lines [8,12,4]. This approach
was found to be especially practical when solving problems that
require large numbers of analyses such as when performing relia-
bility analyses. The objective of this paper is to describe a compu-
tationally efficient procedure that gives an estimate of the beam’s
ultimate capacity using influence lines. The procedure is shown to
improve our ability to determine the most critical locations where
the loads should be placed when performing the nonlinear
structural analysis reducing the number of load patterns that need
to be investigated.

2. Review of influence lines

Certain types of structures, such as bridges, are loaded by both
non-transient and transient loads (such as those representing vehi-
cles). The transient nature of the loads implies that numerous load
configurations are possible. Influence lines provide an important
tool to identify the most critical loading configuration and loading

http://dx.doi.org/10.1016/j.engstruct.2015.09.003
0141-0296/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 (212) 650 7000; fax: +1 (212) 650 6965.
E-mail addresses: gfiorillo@ccny.cuny.edu (G. Fiorillo), mghosn@ccny.cuny.edu

(M. Ghosn).
1 Tel.: +1 (212) 650 8002; fax: +1 (212) 650 6965.

Engineering Structures 103 (2015) 125–133

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/ locate /engstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2015.09.003&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2015.09.003
mailto:gfiorillo@ccny.cuny.edu
mailto:mghosn@ccny.cuny.edu
http://dx.doi.org/10.1016/j.engstruct.2015.09.003
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


points that will create the most severe effects on the various com-
ponents of the structure. An influence line describes the variation
of a load effect (such as the moment, shear force, reaction or deflec-
tion) at a specific point or component of a structure as a concen-
trated loading action (force, moment or temperature) moves over
the structure. For example, Fig. 1 shows plots of typical influence
lines for the shear force kV(x) and moment kM(x) at cross section
‘‘S” of a simply supported and a two-span continuous beam due
to a unit force as it moves to various positions ‘‘x” along the length
of the beams. The concept of the influence line can also be
extended to two dimensions. In that case, the analysis is based
on influence surfaces rather than influence lines [17]. Traditionally,
influence lines have been derived using the Betti-Maxwell
reciprocity theorem and Muller-Breslau’s principle [5,17] although
there are several other analytical and numerical approaches that
can be used [9].

Influence lines are constructed for different sections and
components to determine the most critical sections or components
of a structure and identify the most critical loading position for
each load effect. For example, Fig. 2 shows the influence lines for
moment and shear of a three-span continuous beam with span
lengths equal to 100 ft (30.0 m), 120 ft (37.0 m) and 100 ft
(30.0 m). The top plot shows three moment influence line diagrams
corresponding to three different sections along the continuous
beam, specifically at 40 ft (12.0 m), 100 ft (30.0 m) and 160 ft
(18.5 m) for a unit force. The bottom graph of Fig. 2 shows the
shear influence lines for the same sections.

3. Classic failure mechanism formulation

Because the calculation of the influence line is based on the
linear elastic behavior of the structure, it can only be directly used
to identify the most critical load position which will cause the most
critical component to reach its elastic limit. However, the same
load position will not necessarily coincide with the one that will
produce the most likely collapse mechanism. To demonstrate this
concept let us consider the three-span continuous beam of Fig. 3.
Assuming the nonlinear behavior is represented using the model
of concentrated plasticity, the ultimate moment capacity of each
beam section can be represented by Mu,i which can be modeled
by a rigid-plastic moment-rotation curve. The latter assumption
does not invalidate the generalization of the approach to more
complex nonlinear behavior models because collapse will only be
a function of the ultimate moments Mu,i at different critical
sections i that have been plasticized. For the load pattern shown
in Fig. 3, the failure mechanism requires the plasticization of the
two sections S and B. The maximum Force Fu that produces the
failure of the structure for this configuration can be calculated
using the virtual work principle and it is equal to the expression
in Eq. (1) if the values of Mu,S and Mu,B are the same.

Fu ¼ Mu � Lþ xS
ðL� xSÞ � xS ð1Þ

where L is the length of the span under investigation and xS is the
distance of section S from the support A.

In practical applications, engineers are interested in identifying
the positions of the load along the length of the beam that will
cause collapse with the minimum load intensity. When the load
is characterized by a single force, this problem is simple to solve.
In fact, by taking the derivative of Eq. (1) with respect to xS and
setting it equal to zero, the solution of the equation for xS gives
the minimum value for Fu:

dFu

dxS
¼ d

dxS
Mu � Lþ xS

ðL� xSÞ � xS

� �
¼ 0: ð2Þ

The solution of Eq. (2) gives xS = 0.414 Lwhich is consistent with
the result of the linear elastic analysis that identifies the section at
0.414 L as the most critical for first failure in positive bending. If
Mu,S and Mu,B are not equal, then the expression in Eq. (1) is no
longer valid and Fu and xS obtained above are no longer correct.
The same is true when there are more than one applied force.
For this reason, the virtual work approach is not recommended
because it requires setting up a different ultimate load equation
for each structural configuration and each loading configuration.
This justifies the need for the approach proposed in this study
based on an alternative method which extends the use of influence
lines for evaluating the ultimate capacity of beams as described in
the following section.

4. Proposed methodology

The example described in the previous section shows the
impracticality of the virtual work method when the failure mech-
anism due to the applied load changes along the length of the
beam. In general, a flexural beam under high vertical loads can fail
in shear, bending or a combination of both. For the middle beam of
a three-span continuous system, three plastic hinges are required
to cause a bending moment mode of failure as shown schemati-
cally in Fig. 4. Also, the member would fail in shear if only two
plastic shear hinges are formed as shown in Fig. 5. The two-hinge
shear failure mechanism is valid whether the beam sections shear
behavior is considered to have some level of ductility or is consid-
ered to be brittle. For sections with brittle behavior, the analysis
procedure for the ultimate capacity is simpler than the case of
beams with ductile behavior as it will be described later at the
end of this section. Let us first discuss the case of ductile beams.
Figs. 4 and 5 show the failure mechanisms and the influence lines
associated with each section evaluated for the initial structural
configuration without plastic hinges labeled as sections B, S and
C. After the first plastic hinge is formed, a new structural configu-
ration is defined by adding a release where the plastic hinge forms
and the additional load is redistributed according to the new con-
figuration. Therefore, any possible failure mechanism can be
obtained by combining the influence lines based on the status of
critical sections. For instance, each section may or may not have
undergone local plasticization which is reflected by the presence
of a hinge. Moment or shear failures at three critical locations of
the beam are indicated with letters B, S, and C in Figs. 4 and 5. A
digit is assigned to each section to indicate the status of the sec-
tion, 0 indicates the undamaged section, number 1 and 2 indicate
the section moment and shear plasticization respectively. All pos-
sible member failure possibilities are listed in Table 1. The first
three columns of Table 1 shows the status of the section at location
B, S, and C, while the fourth column describes the status of the
member for each combination. These combinations represent a
potential configuration of the member prior to failure. The total
number of possible permutations is equal to 16 after removing
the number of statically inadmissible cases. For example the com-
bination [2, 2, 2] is not an admissible combination, because it rep-
resents the failure in shear at three sections B, S and C, while any of
two shear plastic hinges in the system would have already caused
failure of the member. It is proven in this study that the failure
causing load of the beam for any loading position along the beam
can be estimated once the influence lines of the structure for the 16
cases listed in Table 1 are established.

As shown in Figs. 4 and 5, a continuous beam subjected to a
generic set of forces will need to develop at most three plastic
hinges at points B, S, and C to produce a mechanism either for pure
bending or a combined effect of moment and shear while just two
hinges are sufficient to cause failure in pure shear. Let us indicate

126 G. Fiorillo, M. Ghosn / Engineering Structures 103 (2015) 125–133



Download English Version:

https://daneshyari.com/en/article/265941

Download Persian Version:

https://daneshyari.com/article/265941

Daneshyari.com

https://daneshyari.com/en/article/265941
https://daneshyari.com/article/265941
https://daneshyari.com

