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a b s t r a c t

In the first paper of these two companion papers an experimental study was undertaken to ascertain the
dynamic behaviour of identical steel–concrete composite beams with differing shear connection systems.
Two blind bolt connector types were used as shear connection systems in steel–concrete composite
beams. Alongside these, a welded shear stud specimen, and a non-composite specimen were tested for
comparison. In this, the second paper a Timoshenko beam model for steel–concrete composite beams
is developed and is compared with the experimental results. An uncertain boundary condition is inves-
tigated using the Timoshenko beam model and an empirical relation between the displacements at the
beam supports and the rotation of the cross section face is proposed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the first paper an experimental study was carried out on a
series of full-scale steel–concrete composite beams. The series
comprised of three steel–concrete composite specimens and a
non composite specimen for comparison. The composite speci-
mens were designed with partial shear connection of approxi-
mately 70–80%. This is achieved with the use of three different
shear connection types. The steel–concrete composite specimens
were accompanied by a set of push tests designed according to
[1]. Concrete cylinder tests for compressive strength f 01 and Young’s
modulus E1 were also undertaken. The major objective of the
experimental series was to discern the suitability of, and differ-
ences between, the shear connection types. To this end all four
full-scale steel–concrete beam specimens, accompanying push
tests, and concrete cylinders were poured from the same concrete
batch. This approach was taken to ensure similar material proper-
ties across the experimental series. Presented in this section are
the details of the shear connection types, push tests, material tests,
experimental specimens, and their collective results.

In this paper the dynamic behaviour of the steel–concrete com-
posite specimens is simulated using a numerical model. There are
many ways to approach modelling the dynamic behaviour of

beams from the Euler Bernoulli approach such as [2] through to
finite element methods such as [3]. However, it is mentioned by
Nguyen in [4] that the effect of transverse shear on natural fre-
quencies has had little investigation with only two studies being
conducted, namely [5,6]. To add to the body of research the numer-
ical model derived here builds on the work presented in [6–9]. [7]
presented a one dimensional model of a composite beam is pre-
sented where the elements connecting the steel beam and the rein-
forced concrete slab are described by the means of a strain energy
density function defined throughout the axis of the beam where
the beams were forced to maintain equal transversal displace-
ments. The work carried out by [8] questioned the validity of main-
taining equal transversal displacement and showed that besides
hindering sliding on the steel–concrete interface the shear connec-
tor also plays a crucial role in reducing the transversal displace-
ments between the two sections. The analytical model was then
developed in [9] based on [7] with no requirement for equal
transversal displacements of the steel and concrete sections and
included a strain energy density term associated with the relative
transversal displacements between the two sections. The work
presented by [6] points out that the models of [7,9] neglect the
energy used to deform the connecting element. [6] goes on to
include this term and makes comparisons between Euler and
Timoshenko models using this connector definition.

Given the good result of the Timoshenko beammodel presented
by [6] the model presented in this paper is a continuation of that
work. The work of [7,9,6] can be seen as the pursuit of a realistic
description of the shear connector to gain a match between exper-
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imental and analytical results has been the paramount goal. To iso-
late the behaviour of the shear connectors with as few variables as
possible the experiments conducted by [7,9,6] were set up as a
free-free boundary condition by suspending the specimens on
cables. Whilst this is good for conducting research on shear con-
nector behaviour it does little to address the behaviour of in situ
composite beams. Using a simply supported boundary condition
goes some way to addressing this issue however, it also introduces
some uncertainties into the experimental results. Damping is
added to the model in a modified version of that presented by
[10] where the bending and shear stresses have damping compo-
nents and a viscous damping term is added to the axial, bending,
and shear terms. A model for an uncertain boundary condition is
then proposed in order to match the experimental result which
relates the vertical displacement at the supports to the rotation
of the cross-section.

2. Theoretical model

In order to study the effect of varying parameters on the
dynamic behaviour of the steel–concrete composite beams a
numerical model must first be calibrated against experimental
result. The experimental specimens were modelled as Timoshenko
beams with a pinned–pinned boundary to reflect the simply sup-
ported condition of the experiment. The choice to use Timoshenko
beam theory over Euler Bernoulli beam theory was made as the
Timoshenko beam theory gives a better result. A comparison of
dynamic analysis results for Euler Bernoulli and Timoshenko beam
theory for a comparable specimen size was made in [6] and the

Timoshenko beam model produced significantly better results.
More recently a comparison and dimensionless parametric study
was made in [11]. According to [11] the values of
E1J1=ðE1J1 þ E2J2Þ and es=ðes þ ecÞ are dimensionless and vary from
zero to unity. As the difference between these two dimensionless
parameters diminishes the difference between Bernoulli and
Timoshenko beam theories becomes negligible. In the case of the
experimental specimens presented in [12] there is a 13% difference
in non dimensional values and so the result given by Timoshenko
beam theory will be more accurate. The shear connector definition
is taken from [6] whilst the solution method is the same as that of
[6–9]. Referring back to the experimental results table in [12] it can
be seen that there were some low levels of damping measured
from the dynamic analysis. To reflect this in the numerical model,
structural and viscous damping are included based on the method
presented in [10].

Fig. 1 shows the deformations of a shear connection element
due to nodal forces. The figure on the far right shows a shear con-
nector subject to combined nodal forces and combined displace-
ments. The equations describing the nodal forces on the shear
connectors are then given by Eqs. (1)–(4) where l = EcAc

Lcd
. A full

explanation of this shear connector formulation can be found in
[6]. From here on it is also assumed that Lc ¼ ec. This is the original
assumption made in [6]. The lengths of the shear connectors are
SS = 100 mm, BB1 = 95 mm, and BB2 = 80 mm. The uplift is resisted
by friction along the bolts as well as by protrusions from the shaft
of the shear connectors. Referring to [12] Figure [1] it can be seen
that the geometries are complex. Calculating the effective length of
the shear connector then becomes a complex task. Certainly to

Nomenclature

List of symbols
c viscous damping coef
d distance between shear studs
ec distance, concrete nuetral axis to interface
es distance, steel nuetral axis to interface
f frequency (Hz)
k shear connector stiffness per unit length
mc1 nodal force m connector top
mc2 nodal force m connector bottom
nc1 nodal force n connector top
nc2 nodal force n connector bottom
tc1 nodal force t connector top
tc2 nodal forst t connector bottom
u axial displacement
v vertical displacement
y distance from the nuetral axis
yA analytical modal vector value
yE experimental modal vector value
A cross section area
Bi bending mode i
E Young’s modulus
G shear modulus
H height of the steel section
J inertia
K shearing stiffness value
L Lagrangian
L shear connector element length
R damping
S frequency minimisation criteria
T kinetic energy
T thickness
U strain energy

Wf work
a experimental constant
cxy shear strain
dk transverse displacement between stud ends
dl axial displacement of stud ends
�x bending strain
f1 rotation top of shear connector
f2 rotation bottom of shear connector
g damping coefficient
j shear correction factor
m Poisson’s ratio
q density
rx bending stress
sxy shear stress
/ modal vector
w rotation of the cross section face
x frequency (Rad/s)
ðÞ0 vector maximum value
ðÞ1 related to concrete section
ðÞ2 related to steel section
ðÞa related to analysis
ðÞb related to bending
ðÞc related to shear connector
ðÞcr comparison DoF r
ðÞdr damaged DoF r
ðÞe related to experiment
ðÞf related to the flange
ðÞs related to shear
ðÞw related to the web
ðÞe standard contribution
ðÞd dissapative contribution
ðÞT transpose
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