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a b s t r a c t

Evaluation of aging infrastructure has been a world-wide concern for decades due to its economic,
ecological and societal importance. Existing structures usually have large amounts of unknown reserve
capacity that may be evaluated though structural identification in order to avoid unnecessary expenses
related to the repair, retrofit and replacement. However, current structural identification techniques that
take advantage of measurement data to infer unknown properties of physics-based models fail to provide
robust strategies to accommodate systematic errors that are induced by model simplifications and omis-
sions. In addition, behavior diagnosis is an ill-defined task that requires iterative acquisition of knowl-
edge necessary for exploring possible model classes of behaviors. This aspect is also lacking in current
structural identification frameworks. This paper proposes a new iterative framework for structural
identification of complex aging structures based on model falsification and knowledge-based reasoning.
This approach is suitable for ill-defined tasks such as structural identification where information is
obtained gradually through data interpretation and in situ inspection. The study of a full-scale existing
bridge in Wayne, New Jersey (USA) confirms that this framework is able to support structural identifica-
tion through combining engineering judgment with on-site measurements and is robust with respect to
effects of systematic uncertainties. In addition, it is shown that the iterative structural-identification
framework is able to explore the compatibility of several model classes by model-class falsification,
thereby helping to provide robust diagnosis and prognosis.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to conservative strategies that are fueled by high risks
associated with the construction of large civil structures, most
structures today have significant amounts of unknown reserve
capacity. In the context of structural health management of
existing aging structures, structural identification is attractive for
decision-making support. The goal of model-based data interpreta-
tion is to increase the knowledge of real behavior of complex struc-
tures using information provided by behavior measurements. In
order to interpret measurement data, physics-based models are
used to connect hypotheses of structural behavior to observed
behavior and to identify uncertain parameter values of physical
properties. This interpretation serves to improve behavior diagno-
sis and reduce uncertainties associated with behavior prognoses,
such as remaining-fatigue-life evaluation. However, diagnosis is

an ill-defined task that is performed under conditions of high mod-
eling and measurement uncertainty. In addition, modeling errors
are usually systematic, also called epistemic errors as opposed to
random errors, thereby increasing interpretation difficulty.

Single-model-updating approaches such as residual minimiza-
tion have already shown to be inaccurate in the presence of
systematic errors since a single optimal model is intrinsically
imperfect due to parameter-value compensation [1–4]. Instead,
there are always multiple models that are able to explain observa-
tions of the behavior of complex structures. Approaches such as
probabilistic Bayesian inference accounts for multiple solutions
through updating posterior probabilities of parameter values,
thereby estimating the uncertainty associated with the parameter
values. However, a common assumption in these approaches is
that modeling and measurement errors are adequately described
by a joint independent zero-mean Gaussian probability density
function (PDF) [5–7], which is incompatible with the systematic
nature of several modeling uncertainty sources. In addition, some
applications incorporate the variance of the joint PDF as a
parameter in the identification process [8–10] and others assign
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an arbitrary value to the variance [11–13]. However, in complex
civil structures, modeling uncertainties are often biased and corre-
lated spatially. In addition, defining a statistical model of errors
that is not compatible with the true errors leads to biased diagnos-
tics and prognosis [3,14]. While Bayesian inference may provide
useful support when statistical models of errors are known, it is
not robust when aspects such as correlations cannot be quantified.

For the purposes of this paper a model class is defined as a
parameterized physics-based model, where parameters are vari-
ables whose values need to be identified. Models are instances of
model classes. In the context of Bayesian inference, proposals exist
to select an optimal model class among a set of possible model
classes that gives the best trade-off between data fitting and
model-class complexity in order to solve diagnosis and prognosis
tasks [9,15–17]. Some approaches link to Ockham’s razor [18,17],
also called principle of parsimony, which asserts that simpler mod-
els that are compatible with measurements are preferred over
complicated ones. However, simpler models may imply over-
idealization of reality and consequently modeling uncertainties.
Despite undeniable benefits of this principle to simplify modeling
and data-interpretation tasks, the question of the presence of sys-
tematic errors in the model class has not been treated explicitly.
Although several authors in various fields have pointed out the
importance of providing an adequate description of modeling
uncertainties associated with the model class [4,19–22], proposals
for robust alternatives to existing approaches are lacking.

Goulet and Smith [3] proposed an approach that is robust when
knowledge of the joint PDF of modeling and measurement errors is
incomplete. This approach, named error-domain model falsifica-
tion (EDMF), combines PDFs of each source of modeling and
measurement error and determines conservative probabilistic
thresholds that are used to falsify inadequate models. Modeling
errors are estimated using engineering heuristics and field
observations. They have shown that this approach leads to robust
parameter identification in the presence of systematic errors with-
out precise knowledge of the dependencies between modeling
errors. Goulet and Smith [3] also demonstrated that the assump-
tion of independence in the common definition of uncertainties
in Bayesian inference may bias the posterior distribution of param-
eter values in the presence of systematic errors. This last observa-
tion has also been noted by Simoen et al. [23]. Although Goulet and
Smith [3] have observed that EDMF can reveal situations when ini-
tial assumptions related to the model class are erroneous by falsi-
fying all model instances, taking advantage of this characteristic for
exploring possible model classes of complex structures has not
been studied.

Choi and Beven [24] have also observed that model falsification
could serve to point out model deficiencies in the search for a bet-
ter model class. This observation resulted in the proposal of the
generalized likelihood uncertainty estimation (GLUE) framework
[25] in the field of environmental modeling, which is also affected
by large modeling uncertainties. Other examples of model-
falsification procedures can be found in this field. Beck [26] pre-
sented a framework for analysis of uncertainty and model selection
based on recursive search and model discrimination. An approach,
called Monte Carlo filtering, is used for discarding sets of
inadequate model instances. Also, in the field of geology, Cherpeau
et al. [27] proposed a fault-scenario falsification approach using a
misfit threshold. However in such examples, systematic errors
were not included explicitly.

In the field of civil engineering, structural identification
processes are often based on residual minimization approaches
[28–31], which may lead to biased results in the presence of unex-
pected systematic modeling errors. Moon and Aktan [32] proposed
a structural identification framework composed of six steps for
diagnosis and prognosis of complex structures. The process starts

with the observation and conceptualization (step 1) of the struc-
ture from which an a priori model is developed in order to design
in situ experiments. The data collected is then processed and used
to identify the system for subsequent prediction by simulation
(step 6). In spite of the original intention by Moon and Aktan
[32] for step 6 to iterate back to step 1, this methodology does
not fully reflect the iterative aspect of data interpretation. Practice
has shown that, prior to interpreting measurements, engineers
may not fully understand all possible model classes of structural
behavior. For complex structures, a multi-stage backtracking
procedure is often required because the diagnosis task is an
exploratory process involving several iterations [33] of observation
and measurements, data interpretation, modeling and perfor-
mance predictions.

This paper presents a new structural identification framework
based on an iterative falsification process and knowledge-based
reasoning. This framework is illustrated for the structural identifi-
cation of a complex bridge structure where several uncertainties
related to the structural behavior prevents single pass identifica-
tion. It is demonstrated that the iterative structural identification
framework is able to explore compatibility of several model classes
of the structure by falsifying inadequate model classes. Thus, this
approach is able to make diagnosis and prognosis of the structural
conditions using engineering heuristics and on-site measurements,
and is robust to modeling systematic uncertainties.

Section 2 describes the iterative structural identification frame-
work along with the tasks to be performed. Section 3 presents the
steps of the framework applied to a full-scale bridge and a discus-
sion of the resulting diagnosis. Finally, Section 4 contains a sum-
mary and discussion of the iterative aspects and future work.

2. Iterative structural identification framework

Structural behavior diagnosis is an ill-defined inverse engineer-
ing task that is carried out in open-world conditions and thus,
under much uncertainty. For these reasons, such tasks usually lead
to multiple explanations for the structural health management of
existing structures. The number of possible explanations may be
reduced by acquiring knowledge of the structural behavior. The
experience and judgment of the engineer as well as other forms
of heuristic knowledge are thus of utmost importance. In the field
of knowledge-based reasoning, knowledge is acquired by new
information obtained using data-interpretation tools [34]. Through
these tools, engineers may test their knowledge and their hypothe-
ses against observations.

Diagnosis tasks are usually solved through a process of hypoth-
esis generation and testing. Hypotheses are generated at an early
stage from a basic knowledge acquired from limited information.
While an early-stage hypothesis may be revised or discarded if
subsequent data fail to confirm it, it is likely that at least some
hypotheses are correct. Hypotheses are used to organize engineer-
ing knowledge and they help to reduce the size of diagnosis task
search space. Because it would not be possible to guide an efficient
diagnosis task without some hypothetical purpose, hypotheses
serve to transform an open-world ill-defined task into a set of
well-defined deductive tasks. This process is done iteratively while
gradually acquiring knowledge from new observations and from
rejected hypotheses.

In this context, the structural identification framework is gov-
erned by the principle of falsification, which has been well known
by scientists for centuries. However, this principle has only been
popularized in the 1930’s by Popper [35]. His philosophy stipulates
that hypotheses cannot be fully validated by observations and
rather can only be falsified by observations. Several authors, such
as Tarantola [36,37] and Beven [26], underlined the advantages of
this philosophy since it avoids biasing observations by hypotheses.
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