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a b s t r a c t

In this work a new hysteretic uniaxial steel model is determined to describe steel cyclic behavior, which
is further implemented to derive a fiber beam–column element on the basis of Hellinger–Reissner
principle. The proposed model maintains full memory of the loading path and evolves following a single
nonlinear differential equation expressing the entire hysteresis. The element is capable of addressing the
overshooting problem of the existing models which occurs during short reversals. The state determina-
tion of the proposed element is investigated numerically following the linearization of the derived
equations. Numerical results are presented that validate the proposed approach and demonstrate its
computational efficiency.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The state of a deformable body subjected to body forces,
tractions and kinematic boundary conditions is considered fully
defined when the displacements, stresses and deformations are
determined at any point of the body. In particular, for earthquake
engineering and structural analysis of skeletal structures, beam
elements usually based on the Euler–Bernoulli theory assumption
that plane sections remain plane and perpendicular to the
deformed axis, are typically considered. This facilitates consider-
ably state determination of such elements.

Displacement based beam elements were initially used follow-
ing the classical stiffness method in which displacements were the
only considered independent field [1]. When cubic and linear
shape functions are employed for the transverse and axial dis-
placements respectively, the resulting displacement field leads to
constant axial deformation and linear curvature, which however
is not appropriate when plastic deformations occur. To address this
deficiency a structural member should be discretized in more than
one element at the expense of increasing computational cost. Also,
equilibrium equations are only fully satisfied at element nodes,
while within the element they are satisfied in weak form as they
are not valid for all possible displacement fields that satisfy essen-
tial boundary conditions.

To resolve this problem, force based models were proposed that
interpolate nodal forces within the element maintaining

equilibrium. These models were implemented in the framework
of the stiffness method of structural analysis and in that respect
they are considered ‘‘mixed” as they use both force and displace-
ment fields as independent ones. One of the first consistent and
general force based beam model was proposed by Spacone et al.
[2] and was later simplified numerically by Neuenhofer and Filip-
pou [3]. Although the force based method proved very efficient
and is currently widely used, there were some concerns about its
variational consistency that were resolved by Hjelmstad and
Taciroglu [4]. Moreover, the same authors in [5] showed that it is
possible to provide non-variationally consistent force-based
elements within the ‘‘nonlinear flexibility” framework by enforcing
equilibrium directly. Also, various local and global solution
strategies originate from the variational structure of the mixed
beam elements as described in [6,7]. Thereafter, mixed methods
seem to dominate the research field of nonlinear beam problems
and corresponding numerical procedures as they proved more effi-
cient following also the work of Hjelmstad and Taciroglu [8], Taylor
et al. [9], Alemdar and White [10], Alsafadie et al. [11] and Correia
et al. [12].

In this context elastoplastic material models were represented
in classical form relying on the notions of yield surface, flow rule
and hardening parameters, while their incorporation in the state
determination process in linearized form gave rise to the return-
mapping algorithm [13]. However, cyclic behavior can also bemod-
eled using hysteretic evolution differential equations. Following
this approach, Simeonov et al. [14] developed a force based element
where material constitutive relations are considered in rate form
and are solved simultaneously with the global differential equa-
tions of motion in state-space form. Also, Jafari et al. [15] extended
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this formulation in large displacement analysis following a dis-
placement based formulation. In addition Triantafyllou and Kou-
mousis [16,17] proposed a finite element procedure where
material nonlinearity is treated constitutively at the element level
through proper implementation of the Bouc–Wen hysteretic rule.

In the case of elastoplastic steel cyclic behavior various models
have been proposed among which the widely used Menegotto–
Pinto model [18] originating from the generalization of
Ramberg–Osgood model [19]. Moreover, for efficient modeling of
the inelastic buckling of reinforcing steel bars under cyclic behav-
ior, the Monti–Nuti model [20] is commonly used as an enhance-
ment of the Menegotto–Pinto model, which accounts for four
different hardening rules. Furthermore, inelastic buckling of rein-
forcing bars has been investigated in several other studies, i.e.
[21–24], while also modeling of high strength structural steel is
addressed in Refs. [25,26].

Although the core of several steel models is the Menegotto–
Pinto model, it is characterized by an overshooting of the reloading
branch after short reversals [27]. This feature was considered of
minor importance and originates from an effort to reduce compu-
tational cost by truncating model’s memory. Although attempts
were made to tackle this aspect by distinguishing the reversals
as major and minor [28] or complete and incomplete [29] the prob-
lem can be also addressed from a different perspective.

In this work a new small displacement fiber beam–column ele-
ment is proposed, which incorporates a uniaxial steel model for
cyclic loading that resolves the overshooting behavior after short
reversals, being on the same time computationally efficient. To
accomplish this, a hysteretic model is developed that maintains
full memory of the loading path and evolves following a single dif-
ferential equation expressing the entire hysteresis. This constitu-
tive behavior is implemented in the general framework of the
two-field Hellinger–Reissner formulation [30] resulting in a well-
established state determination algorithm. This is further investi-
gated numerically following the linearization of the equilibrium
and compatibility element equations.

The rest of the paper is organized as follows: In the first section
the basic structure of the proposed model is derived from classical
plasticity considerations incorporating kinematic hardening. Then,
the modifications for modeling steel cyclic behavior are imple-
mented and the comparison with the Menegotto–Pinto model is
performed underlining the features of the proposed formulation.
Cross-sectional constitutive equations are derived in the sequel
from fiber integration and the two-field Hellinger–Reissner princi-
ple is used to derive the element equilibrium and compatibility
equations. The standard linearization method is implemented for
solving the element equations and the respective state determina-
tion process is discussed. Finally, three numerical examples are
presented that verify the proposed beam element and demonstrate
the performance of the hysteretic constitutive relations embedded
into a two-field variational formulation for the inelastic analysis of
steel frames.

2. Inelastic Euler–Bernoulli beam theory

2.1. Fiber plasticity

A hysteretic model incorporates the entire inelastic loading
path of a deformable body, namely elastic loading, yielding, hard-
ening and unloading in a single nonlinear differential equation that
embodies both the yield surface and hardening rule. Mathemati-
cally this addresses the entire evolution process without the need
of incremental considerations [31]. In this context Sivaselvan and
Reinhorn [32] based on Bouc–Wen model [33] proposed a
hysteretic model in stress resultant terms derived explicitly from
classical plasticity theory.

In this work the stress–strain constitutive law of an elastoplas-
tic fiber-rod subjected to uniaxial tension is determined according
to the strain decomposition rule in rate form as [34]:

_r ¼ E _e� _epð Þ ð1Þ
where _r is the rate of normal stress, _e is the rate of total strain and
_ep is the rate of plastic strain. This relation indicates that stresses
evolve proportionally to the evolution of the elastic strains. For
the same fiber a yield function with linear kinematic hardening
and the same initial yield stress in tension and compression

rþ
y0 ¼ r�

y0 ¼ ry0

� �
is expressed in the following form:

U r; b;ryo
� � ¼ r� bj j � ry0 6 0 ð2Þ

with b being the back stress. Plastic strain rate _ep is determined
according to the flow rule:

_ep ¼ _k � @U
@r

¼ _k � sgnðr� bÞ ð3Þ

where _k P 0 is the plastic multiplier which is actually the magni-
tude of the strain rate, with the signum function defining its sense.
Axial stress and plastic multiplier are restricted by unilateral con-
strains representing restrictions that signify whether the material
has yielded or not, resulting from Karush–Kuhn–Tucker (KKT) opti-
mality conditions. These are expressed in the following form:

_k �Uðr; b;ry0Þ ¼ 0 ð4Þ
During plastic response ð _k > 0; Uðr; b;ry0Þ ¼ 0Þ the consistency
condition is derived by differentiating Eq. (4):

_k � _Uðr; b;ry0Þ ¼ 0 ) _Uðr; b;ry0Þ ¼ 0 ) _r ¼ _b ð5Þ
Also, when the fiber deforms elastically ð _k ¼ 0; Uðr; b;ry0Þ < 0Þ the
sign of the rate of the yield function indicates loading or unloading
with _U > 0 and _U < 0 respectively.

Taking into account Eq. (5) meaning that the rate of the back
stress during plastic loading is equal to the rate of the axial stress,
the following relation is considered:

_b ¼ H � _ep ¼ H � _k � sgnðr� bÞ ð6Þ
where H is the hardening ratio, i.e. the slope of the stress–strain
curve in plastic strain terms (Fig. 1). Substituting Eq. (1), (3) and
(6) in Eq. (5) the following relation is obtained:

_k ¼ sgnðr� bÞ � E
Eþ H

� _e ð7Þ

Furthermore, introducing a ¼ Et=E as the ratio of the post-yield
tangent modulus over the elastic modulus, the relation between
the hardening ratio H and tangent modulus Et is established as:

H ¼ Et

1� Et=E
¼ a

1� a
� E ð8Þ

Then Eq. (3), using relations (7) and (8) obtains the following
simple form:

_ep ¼ ð1� aÞ � _e ð9Þ
Eq. (9) holds only for the plastic deformation phase. During elastic
loading or unloading plastic strain is not induced as _k ¼ 0. This is
controlled by the compact form of KKT conditions (4). To include
all loading phases in a single relation, Eq. (9) is extended by consid-
ering two Heaviside type functions acting as switches as follows:

_ep ¼ H1 � H2 � ð1� aÞ � _e ð10Þ
where H1 controls yielding and H2 controls loading/unloading
states. Consequently the following distinct phases can be described
in a single equation:
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