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a b s t r a c t

In this paper the dynamic analysis of a beam on a block-and-tackle suspension system is accomplished
using a continuum approach. The modal shape functions and the natural frequencies of the structure
are derived in a dimensionless form for both slacked and stressed cables. A procedure is developed to
handle the nonlinearity originated from the consecutive slacking and stressing of the suspension cable.
Vibration analysis of the bilinear, multi-degree-of-freedom structure is accomplished for a
vortex-shedding generated lift force and for a continuous pedestrian flow.

� 2015 Published by Elsevier Ltd.

1. Introduction

Simple suspension bridges were already used more than
1000 years ago. The oldest known structure is from the 7th cen-
tury, constructed by the Maya civilization at Yaxchilan [1].
Sketches of the first suspension bridge that resembles modern sus-
pension and cable-stayed bridges appeared in Fausto Veranzio’s
masterwork [2] in the late 15th century. These type of structures
are composed of compressed pillars, a bridge deck, and cables.
The main idea behind a suspension bridge is that there are (usu-
ally) two main cables that hang between the pillars and are
anchored to the ground at both ends, while (vertical or inclined)
suspenders connect the deck to the main cables. The
cable-stayed bridges, on the other hand, have one or more pillars
that are the main load bearing structures and inclined suspension
cables transmit forces from the deck to the pillars. There are
numerous variations of these kind of structures, see for example
the comprehensive work of Kawada [3]. The length of suspension
bridges varies from small footbridges, like the Boston Public
Garden Footbridge, to the Akashi Kaikyo Bridge, whose central span
is almost 2000 m long.

Longer and more slender bridges have appeared as material
properties, design methods and building techniques have signifi-
cantly improved. There has also been a strong community demand
for more interesting structures, which are more aesthetic and

appealing to the public. However, slender structures tend to be
more sensitive to dynamic forces induced by wind loads [4,5] or
traffic flow [6], for instance, resulting in vibrations of the bridge
deck. These vibrations can attain high magnitude in some cases,
especially when the vortex-shedding frequency of the wind or
the pace of the traffic approaches one of the natural frequencies
of the bridge. A well-known example of failure caused by mechan-
ical and aerodynamic effects is the collapse of the Tacoma Narrows
Bridge [7]. Pedestrian-induced vibrations of slender footbridges
have also been analyzed by numerous authors. For a literature
review of lateral vibrations see [6], while for vertical vibrations
see for example [8] and the references therein. The most
well-known example for dense pedestrian flow induced resonance
of lateral vibration mode is the London Millennium Footbridge [9].
These examples have revealed that a proper dynamic analysis is
necessary for slender bridges subjected to wind and traffic loads.

The application of some kind of suspension system for foot-
bridge constructions is quite general. The disadvantage of cable
suspension systems is that some cables can be highly overstressed
while others can be slacked. High tension in cables is not desirable
because it may lead to failure, but slacking of cables is also disad-
vantageous. Because cables do not have any resistance to compres-
sion, the dynamic behavior of suspended bridges can be highly
nonlinear. Hence, a hanger system which offers a fairly uniform
stress distribution in the cables has many advantages.

The present paper studies the dynamics of a beam hanged on a
special suspension system, which is composed of pulleys and
cables, and called the block-and-tackle suspension system. This

http://dx.doi.org/10.1016/j.engstruct.2015.07.022
0141-0296/� 2015 Published by Elsevier Ltd.

⇑ Corresponding author.
E-mail address: kocsis@ep-mech.me.bme.hu (A. Kocsis).

Engineering Structures 101 (2015) 412–426

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/locate /engstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2015.07.022&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2015.07.022
mailto:kocsis@ep-mech.me.bme.hu
http://dx.doi.org/10.1016/j.engstruct.2015.07.022
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


effective suspension system was invented by Kolozsváry [10] for
supporting tensile roofs [11,12]. It may also be used as a suspen-
sion system of footbridges, as suggested in [13], where a deck
was suspended to a block-and-tackle suspension system and static
analysis of the structure was accomplished. However, the dynamic
behavior, which is very important in case of light and slender foot-
bridges, has not been studied yet for such structures.

First the mechanical model is introduced in Section 2. Then in
Section 3 the natural circular frequencies and the corresponding
modal shape functions are derived for two states of the bridge.
One state corresponds to slacked cables, and the other state corre-
sponds to stressed cables. The obtained modal shape functions and
frequencies are verified, and the modal decomposition based con-
tinuum approach for dynamic simulations is developed in
Section 4. The vertical vibration of the structure due to
vortex-shedding and passenger traffic is simulated and validated
in Section 5. Finally, conclusions are drawn in Section 6.

2. The mechanical model

The mechanical model of the structure is shown in Fig. 1. There
is a simply supported Bernoulli–Euler beam of length L. Two pulleys
are attached to this beam at equal distances. These pulleys divide
the beam into three spans of length ‘ ¼ L=3. The mass of the pul-
leys, and the friction between the pulleys and their shafts are
neglected. There is a rigid upper structure at height h, to which
three pulleys are attached, as shown in Fig. 1. A massless, inexten-
sible cable runs through the pulleys. The ends of the cable are fixed
to the ends of the beam. The origin of a left-handed coordinate sys-
tem is at the fixed support of the beam, the x-axis points to the
right and coincides with the unloaded, straight axis of the beam,

while the y-axis points downward. The loads act in the x� y plane,
and cause uniaxial bending about the z-axis. Lateral and
lateral-torsional vibrations, and structural damping are neglected.
Small displacements are assumed, ûðx; tÞ denotes the vertical
deflection of the beam.

3. Natural circular frequencies and modal shape functions

Let us introduce the dimensionless coordinate n and time s as:

x ¼ nL ! @n
@x ¼ 1

L ;

t ¼ sT ! @s
@t ¼ 1

T :
ð1Þ

Here the reference length L ¼ 3‘ is set to the total length of the
beam and T is a reference time period which will be fixed later,
depending on the studied problem. The beam deflection can be
given as function of the dimensionless variables:

uðn; sÞ ¼ ûðLn; T sÞ=L: ð2Þ

Then, partial differential equation that governs the free vibration of
a Bernoulli–Euler beam [14] yields:

EI

L3

@4uðn; sÞ
@n4 þ lL

T2

@2uðn; sÞ
@s2 ¼ 0: ð3Þ

Here EI is the bending stiffness of the beam and l is its mass per
unit length. The solution for (3) is searched for in the separated
form

uðn; sÞ ¼
X1
i¼1

uiðnÞ � ai cosð2pf iTsÞ þ bi sinð2pf iTsÞð Þ: ð4Þ

Here f i is the ith natural frequency of the beam, while uiðnÞ is the
corresponding dimensionless modal shape function. The coefficients
ai and bi depend on initial conditions for prescribed shape functions.
Substituting (4) in (3) leads to ordinary differential equations
(ODEs):

EI

L3 uIV
i ðnÞ � 2pf ið Þ2lLuiðnÞ ¼ 0; i ¼ 1;2; . . . ð5Þ

Here prime denotes differentiation with respect to n, hence

uIV
i ðnÞ ¼ d4uiðnÞ=dn4.

Let us introduce the frequency parameter r of the beam as:

r ¼ T

L2

ffiffiffiffiffi
EI
l

s
: ð6Þ

Eq. (5) is solved by

Nomenclature

uðn; sÞ dimensionless beam deflection
n dimensionless coordinate
s dimensionless time
l beam mass per unit length
EI bending stiffness
L total length of the beam
r frequency parameter
qðn; sÞ distributed load
qs static distributed load intensity
q0 dynamic distributed load amplitude
f forcing frequency
T transformation from active to passive modes

� Superscript ‘‘a’’ or ‘‘p’’ would correspond to active or
passive suspension system, respectively.

Tf period of vibration of the forced structure
T reference time period (1=f )
Tn;i dimensionless natural period⁄

f i natural frequency⁄

ki eigenparameter⁄

uiðnÞ normalized modal shape function⁄

Fi area of the ith normalized shape function⁄

Rd;i deformation response factor of mode i⁄

gi modal displacement⁄

l ll

h

L

y

x

Fig. 1. Model of a beam on a block-and-tackle suspension system.
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