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a b s t r a c t

When compared with advanced triangle formulations (e.g. Allman triangle and Arnold MINI), specially
formulated low order quadrilateral elements still present performance advantages for
bending-dominated and quasi-incompressible problems. However, simultaneous mesh distortion
insensitivity and satisfaction of the Patch test is difficult. In addition, many enhanced-assumed (EAS)
formulations show hourglass patterns in finite strains for large values of compression or tension; EAS ele-
ments often present convergence difficulties in Newton iteration, particularly in the presence of high bulk
modulus or nearly-incompressible plasticity. Alternatively, we discuss the adequacy of a new
assumed-strain 4-node quadrilateral for problems where high strain gradients are present. Specifically,
we use relative strain projections to obtain three versions of a selectively-reduced integrated formulation
complying a priori with the patch test. Assumed bending behavior is directly introduced in the
higher-order strain term. Elements make use of least-square fitting and are generalization of classical
B and F techniques. We avoid ANS (assumed natural strains) by defining the higher-order strain in
contravariant/contravariant coordinates with a fixed frame. The kinematical part of the constitutive
updating is based on quadratic incremental Green–Lagrange strains. Linear tests and both hyperelastic
and elasto-plastic constitutive laws are used to test the element in realistic cases.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Low order elements are still the preferred choice for non-linear
and possibly non-smooth simulations, such as the ones including
contact, friction and fracture. We are specially concerned with
these themes and have been using a variant of the MINI triangle
[9] to perform ductile fracture simulations where the equations
correspond to near-incompressibility and are often non-smooth
(cf. [8,4,6]). However, it is widely established that specially formu-
lated quadrilaterals often present higher resolution for localization
problems. Enhanced assumed strain (EAS) elements are typically
presented as a solution (cf. [41,2]) but for large compressive or ten-
sile strains, hourglass instabilities can occur (cf. [42,24,21]). The
issue of stabilization of EAS elements has been discussed during
the late 20th century and early 21st century, cf. [2]. Mesh distor-
tion sensitivity is also a widely discussed concern with EAS and
has been remedied by the first Author in [2]. The

cost-effectiveness of EAS elements for large-scale problems is
another aspect that deserves a careful attention (remarkably, the
work of Puso [37] addresses this problem). Finally, a seldom
addressed problem, implicitly addressed in the seminal work of
Simo, Armero and Taylor (cf. [42]) is the difficult Newton iteration
convergence often exhibited by EAS elements. These issues have
stirred interest in different approaches, such as Cosserat-point for-
mulations, which again still show some mesh distortion sensitivity,
cf. [27]. After a long period of experimentation we concluded that
mesh distortion sensitivity for specially formulated quadrilaterals
could be improved by selecting the appropriate local frames. It is
worth mentioning that there are recent elements that do not com-
ply with the Patch-test (e.g. area or volume coordinate elements,
cf. [26]) and produce exact results in very specific circumstances
but fail in other cases [36].

Requirements for our low order quadrilateral formulation are:

� Straightforward use with finite strain plasticity and localization
problems;
� Objectivity (both nodal permutation and finite strain);
� Satisfaction of the Patch-test;
� Competitive coarse-mesh accuracy for linear bending problems;
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� Absence of locking with nearly incompressible problems;
� Absence of hourglassing in severe compression and tension

tests;
� Absence of internal degrees-of-freedom and static

condensation.

Despite the relative success of EAS and Cosserat-point
approaches, we here take a different approach: starting with a vari-
ant of the B element (for finite strains, see Simo et al. [46]) and an
exercise proposed in T. Hughes’ book (cf. [22], page 261) we gener-
alize the idea to create a new finite strain element. It is worth not-
ing that a preliminary attempt was made by Zhu and Cescotto [48]
for general assumed strain element, but without least-square fit-
ting of strains. For selectively-reduced integration, a number of
shortcomings emerged for distorted elements when a single cen-
tral frame was attempted, a fact that led us to intensively explore
variants of the original idea by Hughes. The use of least-squares (or
equivalently either the Hellinger–Reissner variational principle,
see page 285 of [51] or, with a Lagrange multiplier field, the Hu–
Washizu variational principle, see [43]) allows, after a the intro-
duction of assumed-strains in contravariant/contravariant coordi-
nates, the generalization of this original idea. Bending behavior is
directly introduced in contravariant/contravariant coordinates
and fitted with a weighed least-square approach. The weight
matrix is a function of the Poisson coefficient. Several linear bench-
marks and nonlinear tests are performed, comparing the results of
the proposed methodology with well established formulations that
are known to comply with the Patch test. This work is divided as
follows: Section 2 presents the equilibrium equations for arbitrary
configurations, element formulations and corresponding eigen-
value tests and the constitutive model. Section 3 shows a compar-
ative study of linear versions of the elements, where excellent
results can be observed. Section 4 presents the nonlinear tests
and finally, in Section 5, conclusions are drawn concerning the best
performing element variant.

2. Governing equations

2.1. Equilibrium for an arbitrary reference configuration

Cauchy equations of equilibrium for an arbitrary reference con-
figuration are obtained by manipulation of the spatial version of
equilibrium (the derivations for the latter are shown in Ogden
[31] and extended here). We write the spatial version of Cauchy
equations as:

r � rT þ b ¼ 0 ð1Þ

with r being the Cauchy stress in an orthonormal basis and b the
body force vector in the same basis. Eq. (1) is satisfied for a
pseudo-time parameter ta 2 ½0; T�with T being the total load param-
eter of the analysis and for a position xa 2 Xa belonging to the
deformed position domain (here identified as Xa). Complementing
(1), essential and natural boundary conditions defined in terms of
two functions gi and hi are required (cf. [22]):

ui ¼ gi on Cgi
ð2Þ

rijnj ¼ hi on Chi
ð3Þ

with the boundary Ca ¼ @Xa being partitioned as Ca ¼ Cg [ Ch

(essential and the natural parts of the boundary, respectively). In
Eq. (3), nj are components of the outer normal to Ca. Identifying
the deformation gradient as F , it is possible to use derivatives with
respect to undeformed coordinates; a manipulation of (1) with the
use of the second Piola–Kirchhoff stress, S, allows the writing the
alternative material form of equilibrium:

r0 � FSð ÞT þ Jb ¼ 0 ð4Þ

or, using r0 as the material gradient operator (the derivative with
respect to x0). In (4), J ¼ det F . We now consider two consecutive
configurations Xa and Xb at instants ta and tb with ta P tb. A gener-
alization of (4) then follows:

rb � FbSbð ÞT þ Jbb ¼ 0 ð5Þ

where

rb ¼
@

@xb
ð6Þ

Fb ¼ rb � xa ð7Þ

Jb ¼ det Fb ð8Þ

and

Sb ¼ JbF�1
b rF�T

b ð9Þ

If a pseudo-time instance ta belongs to the interval ½0; T�, we can
re-write (5) as:

rb � FabSabð ÞT þ Jabb ¼ 0 ð10Þ

where Fab ¼ rbxa and ST
ab ¼ Sab. This conclusion will be used in the

weak form of equilibrium. A fact worth pointing out is the follow-
ing: ta must be an equilibrium instant, in contrast with tb. In the
context of finite element analyses, this corresponds to quadratic
incremental strains.

2.2. Kinematics and stress integration

Eq. (10) and conditions (2) and (3) are adopted. The relative
deformation gradient between two configurations Xa and Xb is
given by (note that scalar components of Fab are introduced as
½Fab�ij for the ith row and jth column):

Fab ¼
@xa

@xb
ð11Þ

or, using the covariant basis (cf. [7]), the following product is
obtained:

Fab ¼ JaJ�1
b ð12Þ

where Ja is the Jacobian matrix of xa as a function of curvilinear
coordinates n:

Ja ¼
@xa

@n
ð13Þ

In (13), n is a set of appropriate curvilinear coordinates. The inverse
of the deformation gradient is obtained by swapping indices a and
b : F�1

ab ¼ Fba. The Jacobian determinant, using the same notation, is
given by:

Jab ¼ det Fab ð14Þ

The spatial covariant metric is defined as:

maa ¼ JT
aJa ð15Þ

Using the spatial metric we can write the right Cauchy–Green
tensor (see [31] for the nomenclature) between two configurations
a and b directly obtained from its definition (12) as:

Cab ¼ J�T
b maaJ�1

b ð16Þ

from which a relative Green–Lagrange strain tensor is obtained:

Eab ¼
1
2

Cab � Ið Þ ð17Þ
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