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a b s t r a c t

We present a computational procedure for evaluating the collapse load and assessing the cross-section
classification of thin-walled sections of arbitrary shape on the basis of Eurocode prescriptions. The pro-
cedure is based on two algorithms which address separately the rigid-plastic model adopted by the
Eurocode for ordinary steel cross-sections and arbitrary uniaxial constitutive laws typically used for
stainless steel and aluminum. Both algorithms are based on a polygonal description of the cross section
boundary so that integrals extended to the section domain are conveniently expressed as algebraic sums
depending upon the coordinates of the section vertices. Accordingly, a further algorithm is illustrated in
order to automatically convert the plate and node model adopted by Eurocode to a polygonal description
of the section geometry. The numerical effectiveness of both algorithms is assessed with reference to an
I-shaped, a Z-shaped and a RHS cross sections.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Both the design and the verification of a structure have to take
into account not only the attainment of yield or fracture condi-
tions, but also the occurrence of buckling phenomena, as they
can cause collapse of the structure for stress levels lower than
the strength of material supposed to act on the whole section. In
particular, buckling analysis is undoubtedly fundamental for
thin-walled beams, as the buckling load is inversely proportional
to the slenderness of the beam. Despite the high values of yield
and ultimate stress guaranteed by steel or aluminum and their
iso-resistant behavior, compression on the plates composing the
cross-section of a thin-walled steel/aluminum beam is likely to
determine the attainment of local buckling conditions for relatively
low values of the applied load.

Due to the extraordinarily large employment of structural
thin-walled steel elements subject to axial load and bi-axial bend-
ing, thus likely to undergo local buckling, it is easy to conclude that
a thorough study on this issue is particularly relevant in order to
ensure the fulfillment of safety and reliability requirements.

Among several strategies proposed in the past for nonlinear
analysis of thin walled beams [1–3] we mention the Generalized
Beam Theory (GBT) since it has been recently object of a renewed
interest [4–6]. Complementary researches regard the analysis of

the sectional behavior although they are usually focused on appli-
cations to specific cross-section shapes. For example, the analysis
of H-sections behavior underlines the relevance of interactive
effects, especially for complex load patterns [7,8]. Interaction
effects on constituent plates have also been considered by Zhou
et al. [9] in order to determine enhanced class 3 slenderness limits
for square and hollow sections in compression.

Gardner and Theofanous [10] have shown the advantages asso-
ciated with the application of a new approach, called Continuous
Strength Method, based upon the adoption of an experimentally
determined curve, relating the strain at which local buckling
occurs to the slenderness of the cross section.

In spite of their theoretical reliability, these approaches may
prove to be hardly applicable to practical design necessities, espe-
cially when a large number of different elements has to be taken
into account. Furthermore, as previously discussed, some of the
existing methodologies, though accurate and sophisticated, refer
to cross-sections of specific shapes, whereas it would be clearly
preferable to set up a unique strategy able to encompass an arbi-
trary cross-section geometry.

A practical answer to the aforementioned necessities is pro-
vided by design regulations. Most of them adopt a cross-section
classification which is fundamentally based upon the capacity of
the cross section to fully develop a plastic hinge before local buck-
ling occurs. In practice, the section classes are evaluated by com-
paring the length-to-thickness ratios of the single plate
composing the cross-section with suitable functions, which

http://dx.doi.org/10.1016/j.engstruct.2015.05.037
0141-0296/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: f.marmo@unina.it (F. Marmo).

Engineering Structures 100 (2015) 57–65

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/ locate /engstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2015.05.037&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2015.05.037
mailto:f.marmo@unina.it
http://dx.doi.org/10.1016/j.engstruct.2015.05.037
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


depend on the material properties, on the constraint conditions of
the plates and on the normal stress distribution acting on the
cross-section [11].

Such approaches are followed, with limited differences, both by
American regulations, e.g. ANSI/AISC 360-10 [12], and by
Eurocodes [13,14]. Though substantially based upon the same
approach, Eurocodes seem to provide a more detailed and versatile
description of the phenomenon under examination. In particular,
unlike ANSI/AISC 360-10, the classification procedure suggested
by Eurocodes does not refer to specific cross-section shapes
[15,16]. Actually, the section is conceived as an arbitrary collection
of rectangular plates so that, on the basis of their mutual constraint
conditions, the procedure adopted by Eurocodes can be applied to
any cross section and will be addressed in below.

Actually, the intent of our work is not to investigate on the relia-
bility of the procedure provided by building regulations, but rather
to implement an automatic procedure for thin-walled cross-section
classification useful for design purposes. A similar study has been
conducted by Rugarli [17]; though limited to the classification of
I- or H-shaped cross-sections, it is computationally very efficient
in case a high number of strength checks has to be conducted for
each section. On the contrary, the procedure described in the pre-
sent paper has been formulated with the specific intent of being
applicable to cross-sections of arbitrary shape and capable of detect-
ing the collapse load for any cross-section class.

Specifically, the nonlinear analysis preliminary to class 1 or 2
grading is carried out in the present paper on the basis of two sep-
arate algorithms depending on material constitution. Actually, a
rigid-perfectly plastic behavior is prescribed by Eurocodes for ordi-
nary steel so that the Nelder–Mead simplex method [18] has been
adopted. Conversely, for stainless steel and aluminum, nonlinear
constitutive laws are suggested in the literature; for this reason
the secant method [19,20] enhanced with the fiber-free approach
[21,22] has been adopted. The same method has also been used
for the elastic analysis required for class 3 and 4 sections.

The domain integrals required by the secant approach are com-
puted analytically, thanks to the fiber-free approach, by consider-
ing a boundary representation of the section. On the contrary
Eurocode addresses sections by a plate and node model, i.e. as a
discrete collection of nodes connected by plates which represent
webs and flanges of the section. For this reason, in order to obtain
a fully automated cross-section classification procedure, an algo-
rithm which allows one to obtain the polygonal description of
the cross-section starting from the plate and node model has been
developed.

The paper is organized as follows: in Section 2 we formulate the
equilibrium problem to be solved and motivate the adoption of
two different procedures to solve the sectional equilibrium equa-
tion. In Section 3 a different formulation of the sectional equilib-
rium is described so as to properly employ the simplex method.
In Section 4 we present the automatic procedure that is used to
switch from the plate and node model of the section to a polygonal
representation of its boundary. Finally, three numerical examples
are reported in Section 5 for classifying an I-shaped, a Z-shaped
and a rectangular hollow section. While for the I-shaped section
a comparison can be performed with available results in the liter-
ature [17], the other examples have been considered intentionally
to show the applicability of the proposed approach to more general
cases.

2. The sectional analysis procedure

The Eurocodes rules for cross-section classification require the
evaluation of the normal stresses r attained at the end points of
each plate of the section subject to its ultimate load. Since the

cross-section is subject to axial force N and bending moments Mx

and My, sectional ultimate load is not unique but depends on the
combination of internal forces acting on the section.

In order to define the ultimate load of the section, a load path is
defined as follows: the internal forces which act on the section are
collected in the vector f ¼ ðN;�My;MxÞt . It is assumed that f can be
additively decomposed as sum of two components, fd and f l, which
respectively denote the internal forces associated with dead and
live loads. In this way one is free to decide which part of the inter-
nal forces need to be amplified according to a load parameter k. For
instance, a load path characterized by the amplification of the
internal forces f l is defined as:

fðkÞ ¼ fd þ kf l ð1Þ

The components of the internal force vector f are evaluated as a
function of the normal stresses rðrÞ acting at the points r ¼ ðx; yÞt

of the cross-section X by means of the integrals:

N ¼
Z

X
rðrÞdA M?

r ¼ ð�My;MxÞt ¼
Z

X
rðrÞrdA ð2Þ

Introducing the vector q ¼ ð1; x; yÞt to simplify the notation,
equilibrium of the section is formulated as:

fðkÞ ¼
Z

X
rðrÞqdA ¼ fd þ kf l ð3Þ

Due to the nonlinear constitution of the material which com-
poses the section, Eq. (3) is nonlinear and its solution for a given
value of the vector f requires an iterative procedure. Some algo-
rithms for solving Eq. (3) in the case of ultimate strength analysis
of ordinary and prestressed reinforced concrete sections can be
found in [19,20,23,24]. In this case one has to determine k in (3)
so that assigned ultimate values of strain are attained in the section.

Differently from the constitutive assumptions commonly
adopted for the limit state analysis of sections, the procedure
described in EC3 for cross section classification is based on a
rigid-plastic material, since this is commonly used in the context
of limit analysis. This assumption implies that the material is con-
sidered to be indefinitely ductile so that no ultimate strain is
assigned.

Clearly, the use of a tangent approach [23] to the solution of (3)
is precluded since the indefinite flat branch of such constitutive
law produces a singular cross-section stiffness matrix. Also, the
rigid portion of such stress–strain law makes inapplicable the
secant algorithms described in [19,20,24], since an infinite value
of secant stiffness is associated with the points along the neutral
axis. Consequently, a different iterative algorithm needs to be
applied in presence of rigid-plastic constitutive assumptions.

As a matter of fact the rigid-plastic constitutive law is suggested
by EC3 only for steel cross sections of class 1 and 2 since steel sec-
tions are assumed to belong to classes 3 and 4 on the basis of the
elastic stress limit. However, for stainless steel and aluminum, the
yield strength and the elastic limit are not always clearly defined
so that constitutive laws more refined than the classical
elastic-perfectly plastic or the rigid-plastic ones are usually adopted
for these materials. In this case the yield strength and the elastic
limit are conventionally assigned by EC3 though the key role played
by constitutive modeling of stainless steel and aluminum towards
their classification has been recently established [10].

On account of the previous considerations two alternative algo-
rithms are employed in the proposed automatic cross-section clas-
sification: (i) the Nelder–Mead simplex method [18] is addressed
for the rigid-plastic constitution assumed by EC3 for steel cross
sections; (ii) the secant approach formulated in [19,20] and
enhanced with the integration formulas presented in [21,22] is
considered for an arbitrary nonlinear constitutive law. Being this
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