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a b s t r a c t

Buckling Restrained Braces (BRBs) are installed in buildings to control lateral displacements caused by
seismic events. Modelling BRBs involves predicting their hysteretic load–deformation curve and failure.
We can distinguish between global models, adjusted with experimental tests, and local models, based on
the constitutive equations for materials. Local models are usually implemented in FEM codes and, while
they also require experimental verification, they can be extended to a wider range of geometries and
materials.

In this paper a new material constitutive model is proposed for predicting the hysteretic response and
failure of a new all-steel BRB. This BRB offers an almost symmetric response for both compression and
tensile loading because of the low interaction between the core and the restraining unit. The hysteretic
behaviour is simulated using a combined isotropic and kinematic hardening as a function of the plastic
flow. Damage is computed using an uncoupled analysis based on a continuum damage mechanism
model. The results from the tensile and BRB tests are used to adjust and verify the model.

The model has been implemented in an FEM commercial code and has proved effective in simulating
the hysteretic response and predicting the failure point of the new all-steel BRB. The model presented
could be extended to BRBs in general, although interaction between the core and the restraining unit
would have to be taken into account.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Buckling Restrained Braces (BRBs) are installed in buildings to
control lateral displacements caused by seismic events. They are
composed of a slender interior steel bar – core – and an exterior
restraining unit. The core resists tensile and compression forces
and dissipates energy by yielding, while the restraining unit stabi-
lizes the core when compressed. The restraining unit has been
designed to be either a hollow steel bar filled with mortar or an
all-steel member [1].

BRB’s response can be predicted by global or local models.
Global models require full scale tests and so should be restricted
to similar brace types. Local models require constitutive equations
for materials, FE modelling and testing for model validation, how-
ever, they can also be extended to a wider range of braces (i.e.
other geometries and materials) and so should reduce costs as
experimental tests can be substituted by virtual tests. Essentially
two prediction models are required for building design: the BRB
load–displacement (or hysteretic) response along with a

low-fatigue model to predict failure. The first model depends on
the core load–deformation response and its interaction with the
restraining unit, whereas the second depends on the core.

Our work is based on actual state-of-the-art local modelling for
conventional – mortar filled – BRBs and all-steel BRBs.
López-Almansa et al. [2], propose a model for conventional BRBs
that considers metal plasticity, using either isotropic or kinematic
hardening, plus scalar indexes to govern the isotropic damage in
the core and in the mortar. All-steel BRBs are easier to simulate
than conventional BRBs as the interaction between the encasing
member and the core do not involve mortar cracking and the tra-
ditional rubber or silicone layer is substituted by an air gap.
Yoshida [3] initially proposes a viscoplastic constitutive model to
simulate the behaviour of steel under large plastic displacements
and then follows up with a two surface model [4,5]. Kim et al.
[6] propose a two surface model for metallic plate dampers with
a damage parameter governed by the dissipated energy. Martinez
et al. [7] propose a plastic damage model based on the combination
of isotropic and kinematic hardening and a damage variable to pre-
dict failure. Bonora [8] defines a model with isotropic hardening
based on Continuum Damage Mechanisms to reproduce ductile
failure. This model is modified to include kinematic hardening
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and the authors [9] suggest that damage only increases under ten-
sion. Bonora et al. [10] adapt the model for structures under a
multi-axial state of stress by considering isotropic hardening.
Pirondi et al. [11] run several tests and simulations and compare
the results to the models of Bonora et al. [10] and Leblond
et al.[12]. Models from commercial software [13] allow isotropic
and kinematic hardening to be combined at a constant ratio but
they do not satisfy both the initial low amplitude, nor the fully
developed amplitude cycles (at advanced stages of plastic
deformation).

In this paper we propose a model for the material that is based
on the continuum damage mechanism model defined by Bonora
and Newaz [9] and combines kinematic and isotropic hardening
as a function of the plastic flow. The model has been successfully
applied to predict the hysteretic response and failure of a new
all-steel BRB [14].

2. Constitutive model

We define a steel constitutive model to reproduce the hysteretic
response and the low cycle fatigue of BRBs. We formulate it in an
implicit integration algorithm, to ensure reliable results, and use
a multi-axial constitutive law as the yielding direction is not
unique.

2.1. Plasticity

Taking into consideration small deformations, the additive
decomposition of the strain tensor eij is:

eij ¼ eE
ij þ eP

ij ð1Þ

where eP
ij and eE

ij are the plastic and elastic strain tensors,
respectively.

Within the Von Mises concept, a yield criterion of mixed hard-
ening is considered [15]:

f ðsij;aij;KÞ ¼
ffiffiffi
3
2

r
ksij � aijk � ry � KðrÞ 6 0 ð2Þ

where ry is the yielding stress, r is an internal hardening variable, sij

is the stress deviator, aij is the kinematic hardening tensor and KðrÞ
is the function that defines the evolution of the isotropic hardening.
kxijk ¼ xijxij. Fig. 1 shows the evolution of the yielding surface in the
stress space.

The evolution of the internal variables are described using the
scalar r from the flow rule:

_eP
ij ¼ _r

sij � aij

ksij � aijk
ð3Þ

where _aij ¼ b _eP
ij and bðrÞ is a function that defines the kinematic

hardening.

2.2. Damage

The model considers an uncoupled damage analysis [9], which
is based on the continuum damage mechanism model, where the
damage variable (D) considers both the effects of the irreversible
processes in the micro-structure (evolution and creation of the
voids) and in the macro scale (macro cracks) of the material:

_D ¼ a0
D0cr � D0
� �ð1=a0Þ

ln ecr=ethð Þ
2
3
ð1þ mÞ þ 3ð1� 2mÞ rH

req

� �2
 !

� ðDcr � DÞ
ða0�1Þ

a0
_r
r

ð4Þ

where D0cr is defined as 1 [9] and D0 is the initial damage, eth is the
strain at which damage starts, ecr is the failure strain from the ten-
sile test, m is the Poisson’s ratio, a0 is a material parameter which
defines the shape of the damage curve and rH and req are the
hydrostatic stress and the Von Mises stress, respectively. The criti-
cal damage (Dcr) corresponds to the material failure produced by a
macro crack, and can be formulated as [16]:

Dcr ¼ 1� rR

ru
ð5Þ

where rR and ru are the rupture and the maximum stress, respec-
tively, obtained from a tensile test.

3. Implementation

3.1. Algorithm

The algorithm entries are the current step deformation enþ1 and
the set of the internal variables (�) from the previous step: eP

n; eE
n;an

and rn. The outputs of the algorithm will be the updated values of
the internal variables, the stress tensor and the constitutive tan-
gent tensor. The algorithm works by applying the following steps:

1. Compute elastic trial state
2. IF f nþ1 6 0 THEN

Elastic step: ð�Þnþ1 ¼ ð�Þn & EXIT
3. IF f nþ1 > 0 THEN

Plastic step: GO TO Step 4
4. Return mapping algorithm

WHILE ABS(f nþ1) < TOLER DO
Increment of plastic parameter:

Dr ¼ f nþ1
3
2ð2GþbÞ

Update the internal variables
rnþ1 ¼ rn þ Dr
Dep

ij ¼
sij�aij

ksij�aijk
Dr

ðeP
ijÞnþ1

¼ ðeP
ijÞnþ1

þ Dep
ij

ðeE
ijÞnþ1

¼ ðeE
ijÞnþ1

� Dep
ij

� � �
ðaijÞnþ1 ¼ ðaijÞnþ1 þ bDep

ij

f nþ1

where G is the shear modulus.
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Fig. 1. Evolution of the yielding surface.
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