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a b s t r a c t

It is generally assumed that the elastic torsional stiffness of structural reinforced concrete (RC) members
that are subjected to a torsional moment less than the cracking torque can be accurately estimated,
despite a lack of adequate experimental or theoretical examination. The softened membrane model for
torsion (SMMT), which has been validated experimentally, provides accurate estimates of pre-cracking
torsional stiffness for solid and hollow RC members. However, the SMMT requires an iterative solution
algorithm, and is thus inconvenient for design purposes. This paper presents a simplification of the
SMMT and proposes a unified rational formula for the direct calculation of the initial torsional stiffness
of solid and hollow RC members. The proposed formula predicts the initial torsional stiffness of nine hol-
low RC beam specimens almost perfectly. When used to calculate the stiffness of 147 solid and hollow RC
beam specimens, the proposed formula is found to be an almost perfect simplification of the SMMT in
terms of initial torsional stiffness. However, the elastic stiffness values of the 147 specimens deviate from
the formula-calculated values by �40% to +50%, suggesting the values may not be as accurate as com-
monly presumed. It is also shown that the proposed formula can combine with an existing Tcr � hcr for-
mula to provide a precise bi-linear simplification of the nonlinear pre-cracking torque-twist curves for
solid and hollow RC members; this can then be conveniently used in the nonlinear finite element anal-
yses needed in performance-based engineering.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional linear or nonlinear finite element analyses
of structures, which are now routine in structural design practice,
requires values for the torsional stiffness of the reinforced concrete
(RC) members. For this purpose, the elastic values of torsional stiff-
ness are often assumed, and then used in the analyses of structural
RC members that are subjected to a torsional moment that is less
than the cracking torque; structural members in RC frame struc-
tures, for example, are often designed to undergo a limited tor-
sional moment less than cracking torque. However, although the
use of an assumed elastic torsional stiffness appears too logical
to need examination, there are, in fact, theoretical and experimen-
tal difficulties with the precise examination of this assumption. As
a consequence, the routine use of elastic torsional stiffness for RC
members has rarely, if ever, been examined.

The theoretical difficulty in examining this assumption is that,
with the exception of elastic theories [1,2], there are no rational
torsion theory that can predict the pre-cracking torque-twist
responses of RC members. The rational softened truss model
(STM) [e.g., 3–10] can only predict post-cracking responses. The
historical review of torsion theories for structural concrete can
be found, for example, in references [11,12]. The experimental
difficulty is illustrated by the significant variations in the experi-
mental cracking-twist data for RC beam specimens found in the lit-
erature [13,14], which are a reflection of the difficulty of measuring
the small deformations in the torsion tests of concrete beams.

These theoretical and experimental difficulties have recently
been overcome by a series of theoretical and experimental
investigations based on a new rational theory called the softened
membrane model for torsion (SMMT). This theory successfully
incorporates the effect of concrete tensile stress, and thus is cap-
able of predicting both the pre- and post-cracking torque-twist
responses of solid RC elements [13,15–18]. On the basis of a new
experimental project that tested nine large hollow RC beam spec-
imens [19,20], the original SMMT for solid RC members has been
modified and extended to hollow RC members, resulting in a
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unified rational SMMT theory for both solid and hollow RC mem-
bers [12,21]. This project extending the theory to hollow speci-
mens proposed and used a new test apparatus and method, and
near perfect agreement was found between the pre-cracking
branches of the nine analytical and nine experimental

torque-twist curves. The experiment thus validated (1) the test
apparatus and the method’s ability to accurately measure small
twist angles before and around cracking and (2) the SMMT theory’s
perfect accuracy in predicting the pre-cracking branch of a
torque-twist curve. In other words, experiments have confirmed

Nomenclature

A variable as defined in Step 1 in Fig. 7
Ao area enclosed by the centerline of shear flow
Ao;cr Ao at cracking
Al total cross-sectional area of longitudinal steel bars
At cross-sectional area of one transverse steel bar
Ac cross-sectional area bounded by the outer perimeter of

the concrete
a Al=p0ð Þ þ At=sð Þ, variable as shown in Eqs. (2)–(4)
B variable as defined in Eq. in Fig. 3(a) or as defined in

Step 1 in Fig. 7
b Al=p0ð Þ � At=sð Þ, variable as shown in Eqs. (2)–(4); width

of the rectangular cross-section as illustrated in Fig. 1(a)
when associated with the depth-to-width ratio r

C variable as defined in Step 1 in Fig. 7; variable as defined
in Eq. (14)

c 1= e2 � e1ð Þ, variable as shown in Eqs. (2)–(4); depth of
neutral axis

d �e1 þ �e2, variable as shown in Eqs. (2)–(4)
E td=Es, variable as shown in Eqs. (2)–(4)
Es elastic modulus of steel bars
f 0c cylinder compressive strength of concrete
f cr ; ecr cracking stress and strain of concrete
f l; f t smeared (average) steel stress in longitudinal and trans-

verse directions, respectively
f s smeared (average) stress of steel bars
f y; ey yield stress and strain of bare steel bars
f ly; f ty yield strength of longitudinal and transverse reinforcing

bars, respectively
G shear modulus of concrete as used in Eq. (14)
H variable as defined by Eq. (4b)
h depth of the rectangular cross-section, as illustrated in

Fig. 1(a)
jd internal moment arm in bending of reinforced concrete

members
k1c ratio of the average compressive stress to the peak com-

pressive stress in the concrete struts, taking into ac-
count the tensile stress of concrete

k1t ratio of the average tensile stress to the peak tensile
stress in the concrete struts

M bending moment
po perimeter of the centerline of shear flow
po;cr po at cracking
pc perimeter of the outer concrete cross section
q shear flow
Q variable as defined in Eq. in Fig. 2(b)
r h=b; depth-to-width ratio of the rectangular

cross-section
s spacing of transverse hoop bars
t wall thickness of the hollow cross-section
T torque
Tcr cracking torque
Ti terminal torque of the initial T � h straight line
td thickness of shear flow zone
td;cr td at cracking
td;Solid td- value calculated using the SMMT-S Eq. in Fig. 2(b)
td;cr;Solid td;cr of a representative solid section as calculated in

Step 1 in Fig. 7

td;cr; Hollow td;cr for hollow members as used in Step 2 in Fig. 7
a2 fixed angle, angle of applied principal compressive

stress (2-axis) with respect to longitudinal steel bars
(l-axis), as illustrated in Fig. 1(b)

b deviation angle as calculated in Eq. in Fig. 3(a); St.
Venant’s coefficients as used in Eq. (14)

e0 concrete cylinder strain corresponding to peak cylinder
strength f 0c

e1; e2 smeared (average) biaxial strain in 1- and 2-directions,
respectively

e1;cr ; e2;cr e1; e2 at cracking, respectively
�e1;�e2 smeared (average) uniaxial strain in 1- and 2-directions,

respectively
�e1;cr �e1 at cracking
�e1s;�e2s uniaxial surface strain in 1- and 2-directions, respec-

tively; �e1s ¼ 2�e1, and �e2s ¼ 2�e2

el; et smeared (average) biaxial strain in l- and t-directions of
steel bars respectively

�el; �et smeared (average) uniaxial strain in l- and t-directions
of steel bars respectively

�en smeared (average) uniaxial yield strain of steel bars
�es smeared (average) uniaxial strain of steel bars
esf smeared (average) strain of steel bars that yield first,

taking into account Hsu/Zhu ratios
/ curvature of the concrete struts along 2-direction
u curvature of the concrete struts along 1-direction
c21 smear (average) shear strain in 2-1 coordinate
clt smear (average) shear strain in the l-t coordinate of

steel bars
g multiplier factor for the average tensile and compres-

sive stresses of concrete, as defined in Eqs. and in
Fig. 3(a)

k multiplier factor for the pre-cracking stiffness of the
tensile stress–strain relationship of concrete, as defined
in Eq. in Fig. 3(a)

l multiplier factor for the peak-stress strain of the tensile
stress–strain relationship of concrete, as defined in Eq.
in Fig. 3(a)

rc
1;rc

2 smeared (average) normal stresses of concrete in 1- and
2-direction, respectively

rc
1;cr ;rc

2;cr rc
1;rc

2 at cracking, respectively
r=e abbreviation symbol for the parameter

rc
1 � rc

2

� �
= e1 � e2ð Þ

sc
21 smeared (average) shear stress of concrete in 2-1 coor-

dinate
slt applied shear stresses in the l-t coordinate of steel bars
q steel ratio
ql;qt longitudinal and transverse steel ratios respectively
qtotal ql þ qt; total steel ratio
m12ð ÞShear Hsu/Zhu ratio m12 used in the SMM
m12ð ÞTorsion modified Hsu/Zhu ratio used in the SMMT for torsion

h angle of twist per unit length
hcr cracking angle of twist per unit length
hi terminal h of the initial T � h straight line
f softened coefficient of concrete in compression

C.-H. Jeng, M. Chao / Engineering Structures 99 (2015) 92–107 93



Download English Version:

https://daneshyari.com/en/article/266167

Download Persian Version:

https://daneshyari.com/article/266167

Daneshyari.com

https://daneshyari.com/en/article/266167
https://daneshyari.com/article/266167
https://daneshyari.com

