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a b s t r a c t

This paper introduces an application (based on the algebraic methods) that can be used to evaluate the
stress and strain time evolution of concrete compact cross-sections cast and/or prestressed in consecutive
stages and exposed to long term loading.

The overall cross-section may consist of a concrete, structural steel or fibre reinforced polymer compo-
nent combined with the original concrete cross section at a distinct stage of the construction period or
during the life of the structural element. Moreover, the cross-section can be prestressed both before
and after gaining the final shape. Therefore, the application suggested in this manuscript applies to
new structures cast in consecutive stages, and to specific problems involved with the rehabilitation or
strengthening of concrete structures.

The problem is solved by means of the force method and McHenry’s superposition principle.
In a following paper, a series of examples will be utilised to verify the accuracy of the application

presented in this document. The results obtained by the method described in this manuscript will be
compared to a refined and complex general approach introduced in a previous paper.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, construction practitioners have been
facing the challenges of high quality demand and high labour cost.
In order to overcome these challenges practitioners often develop
structures that combine precast elements with cast in place con-
crete components. The use of this technique gives a monolithic
quality to the structure (see for instance [1]).

Similarly, many countries aspire to maintain the traditional
identity of built-up areas. As a result, local administrators promote
structural retrofitting of existing reinforced concrete structures to
enhance their earthquake resistance, to improve their strength to
meet new structural demands or new code requirements, and
to retrofit damaged structural elements. Moreover, structural
retrofitting is adopted to overcome insufficient strength of the
materials in new concrete structures resulting from oversight
errors and lack of proper quality control. A common technique
adopted to improve the bearing capacity of structural elements
is to increase the reinforced concrete cross-section. Concrete
jacketing of beams and columns is a specific method used to
increase the cross-sectional area (see for instance [2–5]).

In all these cases a reliable evaluation of the stress redistribu-
tion that occurs in the cross section because of creep and shrinkage
of concrete is important to guarantee an accurate forecast of the
behaviour of the structure under service loads and at the ultimate
load (see [6]).

A general approach utilised to evaluate the stress and strain
time evolution of concrete compact cross-sections cast or pre-
stressed in consecutive stages under long term loading was pre-
sented in a previous paper [7]. The overall cross-section was
made of reinforced concrete, prestressed concrete or steel parts
added at distinct stages of the construction process. Moreover,
the cross-section could be prestressed several times during con-
struction and after gaining the final shape. This approach led to a
system of Volterra integral equations (see for instance [8,9]),
whose convolution integral (that is the closed form solution) can-
not be determined because of the complexity of the creep function
usually adopted to describe concrete behaviour ([10,11]). The sys-
tem of Volterra integral equations was therefore solved by means
of a refined step-by-step time integration method (based on the
techniques suggested by classic numerical analysis [12]). The
method gives rise to an error whose value can be minimised
through a suitable choice of the time discretization procedure. This
approach is complicated and cumbersome, hardly implementable
in a computer program and too complex for a common engineer.
Therefore, this paper illustrates simplified versions of the algebraic
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methods discussed in [13–15] that allow to overcome the inability
to solve the complex numerical integration.

In a following paper the output of the computer program, writ-
ten according to the more refined solution suggested in the previ-
ous paper [7], will be compared with the outcomes of this
approach to verify the accuracy of the latter.

2. The approach to problem-solving

The assumptions adopted in the following are:

1. The cross-section is made of two individual homogeneous
pieces of concrete (indexes c1 and c2) or another generic linear
viscoelastic material (or an elastic material when setting its
creep coefficient to zero) whose constitutive law is a Volterra
integral equation approximated by the following algebraic
expression (see Fig. 2):

ec1ðx1; y1; tÞ ¼
rc1 x1; y1; t
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� �
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� �� �
þ rc1ðx1; y1; tÞ

Ec1 t�0
� � 1þ vc1 t; t�0

� �
�uc1 t; t�0

� �� �
ec2ðx2; y2; TÞ ¼

rc2 x2; y2; T
�
0

� �
Ec2 T�0
� � uc2 T; T�0

� �
1� vc2 T; T�0

� �� �
þ rc2ðx2; y2; TÞ

Ec2 T�0
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� �� �
ð1Þ

where time t is the age of piece of concrete 1 (the oldest) and time T
is the age of piece of concrete 2, related one another by means of the
construction history (see Fig. 1). Ec1 t�0

� �
and Ec2 T�0

� �
are the elastic

moduli measured at the onset of loading, uc1 t; t�0
� �

and uc2 T; T�0
� �

are the creep coefficients and vc1 t; t�0
� �

and vc2 T; T�0
� �

are the aging
coefficients.

Both concrete pieces hold a tendon (subscripts p1 and p2) whose
constitutive law is linear elastic (at least under long term service
loads):

ep1ðtÞ ¼
rp1ðtÞ

Ep1
; ep2ðtÞ ¼

rp2ðtÞ
Ep2

ð2Þ

2. No bond slip can occur among the parts which make up the
cross-section (external and unbonded internal prestressing
and composite steel-concrete beams with flexible connections
are therefore not considered).

3. The Bernoulli–Navier hypothesis (an initially plane beam sec-
tion which is perpendicular to the beam reference axis remains
plane and perpendicular to the beam’s axis in the deformed
configuration) applies to each individual homogeneous part of
the cross-section. This assumption is commonly adopted (and
accepted) when dealing with compact cross sections in the ser-
vice stage (as it is the case of the application presented in the
following).

4. The internal axial force and bending moment act on a plane of
symmetry of the cross section (out-of-plane bending is not
taken into account, not to complicate too much the solving
system).

The application of the presented approximate solution is there-
fore restricted to cross-sections cast in two stages. That is, precast
prestressed concrete beams (or steel or timber beams) with a cast-
in-situ slab (prestressed or not) or jacketed beams and columns
(i.e. the cases most frequently found in practical applications).

The stress and strain of the cross-section will be evaluated in
the following time intervals (see Fig. 1 that refers to a precast
prestressed beam with a cast-in-situ prestressed slab):

Notation

x1 and y1 principal axes of piece of concrete 1 (the first to be cast)
Ac1 and Jc1 area of piece of concrete 1 and its second moment of

area with respect to the x1 axis. The cross-section
change because of grouting of tendon 1 (when post-
tensioned) is not taken into account

Ap1 cross-sectional area of tendon 1
x2 and y2 principal axes of piece of concrete 2 (the second to be

cast)
Ac2 and Jc2 area of piece of concrete 2 and its second moment of

area with respect to the x2 axis. The cross-section
change because of grouting of tendon 2 is not taken into
account

Ap2 cross-sectional area of tendon 2
Ec1 and Ec2 reference elastic moduli (for instance the elastic

moduli at the age of 28 days) of concrete 1 and 2
respectively

Ec1(t) and Ec2(T) elastic moduli of concrete 1 at age t and of
concrete 2 at age T respectively

Ep1 and Ep2 elastic moduli of the tendons
G1 centroid of piece of concrete 1
G2 E-weighted centroid of the final cross section
r ratio between the relaxation loss and the initial

prestressing of the prestressing steel
r age of piece of concrete 1
T age of piece of concrete 2
yp1 position of tendon 1 on y1 axis
yp2 position of tendon 2 on y2 axis
yc1 position of DXII on y1 axis (therefore yc1 is negative in

Fig. 2)
yc2 position of DXII on y2 axis

DXld
I stress resultant variation in tendon 1, positive when act-

ing according to Fig. 2, caused by the ‘‘ld’’ load
DXld

IV stress resultant variation in tendon 2, positive when act-
ing according to Fig. 2, caused by the ‘‘ld’’ load

DNi and DM�i internal axial force and bending moment variation
due to an external long term load. These axial force and
bending moment usually follow from a linear elastic
structural analysis and therefore act in the centroid of
the cross section, i.e. point G1 or G2 depending on the
current stage of construction. These vectors are positive
when acting according to Fig. 2

DNi and DMi internal axial force and bending moment variation
due to any external long term load acting at point G1

(i.e. DMi ¼ DM�i � DNi � yDNi
when DNi acts at point G2,

DMi ¼ DM�i otherwise. See Fig. 2). These vectors are
positive when acting according to Fig. 2

DXld
II and DXld

III stress resultants in piece of concrete 2 (and in ten-
don 2, if any) measured on the contact surface between
the two pieces of concrete, caused by the ‘‘ld’’ load

dsec
jk term of the flexibility matrix: the axial strain (or the

curvature) present in the homogeneous piece ‘‘sec’’ of
the cross section, in the point where DXj acts (positive
when concordant to DXj), due to DXk = 1

dld
j non-compatible strain (or non-compatible curvature)

on the contact surface where DXj acts, caused by the
‘‘ld’’ load (positive when acting according to DXj)

vc1 t; t�0
� �

and vc2 T; T�0
� �

aging coefficients of concrete 1 and 2
respectively

uc1 t; t�0
� �

and uc2 T; T�0
� �

creep coefficients of concrete 1 and 2
respectively
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