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a b s t r a c t

The finite element method in principle adaptively divides the continuous domain with complex geometry
into discrete simple subdomain by using an approximate element function, and the continuous element
loads are also converted into the nodal load by means of the traditional lumping and consistent load
methods, which can standardise a plethora of element loads into a typical numerical procedure, but ele-
ment load effect is restricted to the nodal solution. It in turn means the accurate continuous element
solutions with the element load effects are merely restricted to element nodes discretely, and further lim-
ited to either displacement or force field depending on which type of approximate function is derived. On
the other hand, the analytical stability functions can give the accurate continuous element solutions due
to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when
subjected to different element loads that deter the practical applications. To this end, this paper presents
a displacement-based finite element function (generalised element load method) with a plethora of ele-
ment load effects in the similar fashion that never be achieved by the stability function, as well as it can
generate the continuous first- and second-order elastic displacement and force solutions along an ele-
ment without loss of accuracy considerably as the analytical approach that never be achieved by neither
the lumping nor consistent load methods. Hence, the salient and unique features of this paper (general-
ised element load method) embody its robustness, versatility and accuracy in continuous element solu-
tions when subjected to the great diversity of transverse element loads.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In regard to the second-order behaviours of a beam-column
(element displacement and force solutions), Timoshenko and
Gere [1] derived a differential governing equilibrium equation of
a member subjected to various element loads as known as the ana-
lytical approach. The continuous efforts on the structural stability
based on the stability function are drawn for a few decades. For
example, frame stability (i.e. Horne and Merchant [2]), element
load effects on structural stability (i.e. Chen and Zhou [3]), effective
length factors (i.e. Duan and Chen [4,5]), etc. Unfortunately, a
specific stability function can only solve the element response
under a particular element load. It means the stability function
lacks of versatility and generality, especially subjected to various
element loads.

On one hand, the variational methods of approximation, includ-
ing Rayleigh–Ritz and Galerkin method, require the solution over

the entire domain approximated by the smooth continuous func-
tions, and thereby they suffer from the well-known drawback that
the approximation functions for an arbitrary structure with com-
plex geometry are difficult to construct. For the sake of this, the con-
ventional finite element method (Turner et al. [6], Clough [7],
Zienkiewicz [8] and Chan and Kitipornchai [9], Kitipornchai et al.
[10]) was developed, of which embodies three salient features
and, as a natural result, endows with its superiority over the others;
(1) the complex domain in geometry of a structure is discretised
into the typical simple piecewise elements; (2) the approximation
function of each element are the continuous polynomial function
that satisfies its boundary conditions commensurate to its field;
(3) the nodal solutions of each element are obtained by satisfying
the governing equations, such as force equilibrium equation for
structural mechanics, in a weighted integral sense. Therefore, the
finite element method exhibits its superiority in versatility for com-
plex geometry, simplicity in approximate function of an element
and accuracy at the element nodes.

The conventional finite element method can also refer to the
h-version, from which the low polynomial degree of an element
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function is derived. Its accuracy and convergence can be
improved by refining the mesh or subdomain of the problem with
optimal mesh design. The p-version (Peano [11]; Szabo [12]) in
contrast fixes the number and size of finite element, but increases
the order of approximate function. Most of the scholars on the
topic of p-version, including Babuska et al. [13], focused solely
on the numerical convergence based on the error function.
Babuska and Suri [14] presented a hybrid h–p version of the finite
element method that the convergence is attained by simultane-
ously refining the mesh and increasing the order of the approxi-
mate function of an element. Zienkiewicz et al. [15] and Guo and
Babuska [16,17] demonstrated the h–p version embodies not only
the higher convergence rate, but also adaptive characteristic for
various complex problems. Zienkiewicz et al. [15] illustrated the
desired accuracy of nodal values can be attained within one and
at most two h–p refinements of plane stress or plane strain
elements. To emphasise the engineering applications relatively
more than the others aforesaid, Bardell [18] presented the h–p
version of Euler–Bernoulli beam element based on the stiffness
formulation, in which he demonstrated the accuracy in terms of
both deflections and forces within an element under arbitrary
distributed loads. However, the accuracy of deflections and
forces only confine to the linear elastic behaviour of the beam
element.

To attain the accuracy in either displacement or force should
respectively resort to the displacement-based element (stiffness
approach) or force-based element (flexibility approach), where
equilibrium is satisfied only in a weighted integral sense. For
the flexibility method, the equilibrium is strictly enforced along
the interpolation of internal forces within an element for
geometrically linear problems. Kaljevic et al. [19] presented an
integrated force method, which simultaneously impose equilib-
rium equation and compatibility conditions, and produced linear
elastic force and deflection solutions. Petrangeli and Ciampi [20]
first addressed the major difficulty in developing flexibility
approach is the element state determination procedures for non-
linear problem, when they based on the force-based algorithm, in
which produced the deflection and force solutions, but only force
solutions within an element have been reported and the nonlin-
ear effects accounted for did not specify in detail in their numeri-
cal examples. Another flexibility approach developed from
Barham et al. [21] enables to capture linear inelastic behaviour
at the node, and the refine mesh is required for high level of
accuracy.

In contrast with either the stiffness or flexibility approach,
both internal forces and displacements are interpolated indepen-
dently in the mixed formulation, including Hjelmstad and
Taciroglu [22] and Alemdar and White [23], upon which the
variational principle is relied for both independent dependent
variables of force and displacement fields, and the equilibrium
and compatibility condition are satisfied in each field. Their
second-order inelastic solutions are available at the node merely
and the mesh refinement for their approaches is highly
recommended.

Some researchers (i.e. Kaljevic et al. [19]; Barham et al. [21];
Alemdar and White [23]) have developed formulations for the non-
linear analysis by using linear or constant interpolation for
moments along an element, which corresponds to the solution of
the linear equilibrium without element load applied within an ele-
ment and therefore their accuracy can only be reached at the ele-
ment node. To take the element load effect into account that is
scarce in the open literature, the present approach develops the
continuous higher-order element within its domain, but satisfying
boundary conditions of both fields in contrast with the salient fea-
ture of finite element method (2) and yields the accurate solutions
along an element in contrast with the salient feature (3).

Eventually, the present higher-order element enables to capture
the accurate second-order elastic solutions for a whole domain
without element in contrast with the salient feature (1).
Therefore, this generalised element load method can be regarded
as a great improvement and facilitation of the conventional finite
element method as well as the stability function in terms of
generality, which is discussed in Section 4.

2. Displacement-based function of higher-order element with
element load effect

The deformations comprise the deformations u in the x direc-
tion, v in the y direction, w in the z direction and the twist / about
the x-axis. The displacement functions of axial deformation u and
twist / are assumed linear. Based on the co-rotational coordinate
system, the dependent variables of transverse deflections v and
w are replaced by nodal rotations as hz and hy, about z- and y-axis,
respectively, such as u = {u,hy,hz,/}T. These rotations are the
dependent variables in turn which define the transverse deflec-
tions in the element stiffness formulation.

External lateral loads acting on an element are able to generate
the nonlinear elastic deflections, and thereby the additional deflec-
tion component due to transverse element load effect is taken into
account of the displacement interpolation function of finite ele-
ment. This kind of element load can result in the distribution of
bending moment and shear force along an element, in which
equivalent mid-span moment M0 and shear force S0, in Eqs. (4)
and (5) respectively, is introduced without loss of generality.
Therefore, the higher-order transverse displacement interpolation
function of an element not only fulfils the essential boundary con-
dition (compatibility condition) in Eqs. (2) and (3), but also natural
boundary condition (force equilibrium equation) in Eqs. (7) and (8)
similar to the approach of Chan and Zhou [24]. In this sense, this
proposed function can achieve a higher degree of compatibility
and improved equilibrium condition at the element level.
Further, the elastic material law follows in the higher-order ele-
ment function.

vðxÞ ¼
Xp

i

cixi ð1Þ

in which ci is unknown coefficient solved from boundary conditions
given from Eqs. 2–8; p is polynomial of order up to 5 in this sense. In
the transverse deflection v in the y direction,

v ¼ 0 and
@v
@x
¼ hz1 at f ¼ 0 ð2Þ

v ¼ 0 and
@v
@x
¼ hz2 at f ¼ 1; ð3Þ

while the equilibrium equation of bending and shear force given
by

EIz
@2v
@x2 ¼ Pv �Mz1ð1� fÞ þMz2fþM0 ð4Þ

EIz
@3v
@x3 ¼ P

@v
@x
þMz1 þMz2

L
þ S0 ð5Þ

where f ¼ x
L
: ð6Þ

EIz
@2v
@x2 ¼ Pv þMz2 �Mz1

2
þM0 at f ¼ 1=2 ð7Þ

EIz
@3v
@x3 ¼ P

@v
@x
þMz1 þMz2

L
þ S0 at f ¼ 1=2 ð8Þ
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