Engineering Structures 92 (2015) 123-141

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

A methodology for the assessment of the effect of climate change on the thermal-strain-stress behaviour of structures

D. Santillán*, E. Salete, M.Á. Toledo

Technical University of Madrid, Department of Civil Engineering: Hydraulic and Energy Engineering, C/Profesor Aranguren s/n, 28040 Madrid, Spain

ARTICLE INFO

Article history: Received 30 May 2014 Revised 10 February 2015 Accepted 2 March 2015 Available online 24 March 2015

Keywords: Thermal analysis Arch dam Climate change Dam safety Finite element method

ABSTRACT

Thermal loads can cause significant stresses in some structures such as bridges or arch dams. Studies in arch dams show that thermal loads have the most significant effect for causing cracking than other service loads. Moreover, since researches on climate change announce that mean temperature on Earth is expected to increase, the assessment of the impact of the future temperature increase on the structural behaviour of sensitive infrastructures should be considered. This paper proposes a methodology for the assessment of the impacts of global warming on the structural behaviour of infrastructures. The paper links future climate scenarios to the thermal, stress and displacement fields of the structure. The methodology is illustrated with a case study: La Baells arch-dam. The expected stress and displacement fields of the dam under several future climatic scenarios were computed by finite element models. Concrete temperature are expected to increase up to 5.6 K, which will make annual average radial displacements increase in some cases even more than 100%. Tensile stresses are also projected to change and should be adequately monitored in the future. Finally, several adaptation strategies are outlined.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structures are subjected to environmental actions affecting their performance and safety. Among these actions, thermal loads are of special interest in some civil infrastructures, such as arch dams or bridges where stresses may be induced by thermal action due to its hyperstatic nature. Thermal loads cause the second most major repairs in dams under service [1] and they are crucial in the monitoring task of these structures [2–4]. Moreover, thermal loads have the most significant effects for causing downstream face cracks in arch dams in comparison with other service loads [5,6].

According to the Intergovernmental Panel on Climate Change (IPCC), mean temperature increased 0.76 K from 1850–1899 to 2001–2005 [7]. Studies have estimated an average global rise in temperature from 1.4 to 5.8 K between 1990 and 2100 and heat waves will be more intense, more frequent and longer [8]. Future climate predictions in the Earth are estimated by global climate models (GCM), which are numerical representations of the climate system. The concentration of substances that are potentially radiatively active (e.g., greenhouse gases, aerosols) in the atmosphere are used as inputs to the models. Future projections of emissions of these substances are denoted as emissions scenario and are

technological change, demographic and socioeconomic development) and their relationship [9]. The IPCC defined four scenario families (A1, A2, B1 and B2), which cover a wide range of future characteristics, such as demographic evolution, economic development or technological change. A1 family is divided into three groups which are distinguished by the technological emphasis: fossil-intensive (A1F1), non-fossil energy source (A1T) and a balance across all sources (A1B) [9]. These scenarios families have been used to project future atmospheric green house gas (GHG) concentrations. Recently, the IPCC has just published a new generation of sce-

based on a set of assumptions about driving forces (such as

[10]. RCP are prescribed pathways for greenhouse gas and aerosol concentrations, together with land use change. Four RCP have been defined: RCP2.6, RCP4.5, RCP6 and RCP8.5, where the numbers refer to radiative forcings.

GCM have a typical resolution of hundreds of kilometres in the horizontal directions and their predictions are suitable at a global scale. Prediction at a regional or local scale have been carried out with dynamic or empirical downscaling methodologies. One of the most recent predictions at a regional scale for Europe and the North of Africa were developed in the EMSEMBLES project [11]. Predictions were computed with a downscaling methodology using regional climate models (RCM) driven by GCM with several

^{*} Corresponding author. Tel.: +34 91 336 67 09. E-mail address: david.santillan@upm.es (D. Santillán).

Nomenclature

		Р	total air pressure
Abbrevia	tions	q	heat flux
AAEM	age-adjusted effective modulus	q_c	heat flux due to convection
CDF	cumulative distribution function	q _{ev}	heat flux due to water evaporation
FFM	finite element method	a	moisture evaporative flux
CCM	global climate model	л Д.	heat flux due to solar radiation
GUIG		чs а	heat flux due to long wave radiation exchange
GIG	green nouse gas	Pr R	ratio of the hourly beam insolation on a titled surface to
IPCC	Intergovernmental Panel on Climate Change	Кb	that on a horizontal surface
RGM	regional climate model	D	relayation function
RCP	Representative Concentration Pathways	ĸ	relaxation function
RMSE	root mean squared error	ro	ratio of extraterrestrial nourly global insolation to
Α	anisotropy index		extraterrestrial daily global insolation
A_c	area of the cross section	r_t	ratio of hourly global insolation to daily global insola-
$A_{w,s}$	annual water temperature amplitude at the surface of		tion
,.	the reservoir	$S_{\zeta,j}$	mean monthly standard deviation of variable ζ at month
а	solar absorptivity		j
b	coefficient	t	time
Č	specific heat matrix	Ζ	vertical distance between the dam crest and the water
C	Stefan_Boltzmann constant		surface of the reservoir
C _s	specific best	α	extraterrestrial daily-average solar elevation angle
l c	specific heat capacity of air	ß	slope of surface
	specific field capacity of all	P R	monthly ratio or difference between $\overline{\mathcal{T}}$ from different
D	vector of nodal displacements	$P\zeta j$	periods
E_s	moisture emissivity coefficient		amplitude increment due to color radiation
е	emissivity	ΔA_r	amplitude increment due to solar fadiation
e_s	saturation vapour pressure	$\Delta \theta_r$	temperature increment due to solar radiation
E_c	modulus of elasticity of concrete	3	strain
$E_{c,ef}$	effective modulus of elasticity of concrete	$\varepsilon_{c\sigma}$	stress dependent strain
$E_{c,adi}$	aged-adjusted effective modulus of elasticity of con-	$\varepsilon_{c\sigma,ce}$	creep component of stress dependent strain
-,,	crete	$\varepsilon_{c\sigma,es}$	elastic component of stress dependent strain
F	vector of applied forces	Yr.i	monthly error variability of the variable ζ at month j
f	mean compressive strength of concrete	δ	solar declination angle
Gardi	aged-adjusted effective shear modulus of concrete	E _{č.iik}	normalized value of variable ζ at day <i>i</i> , month <i>j</i> and year
σ	ground reflectivity	575	k
Br H	vector of applied heat flows	٢	climatic variable
н.	height of the dam	Č;;ik	value of the variable ζ at day <i>i</i> , month <i>i</i> and year <i>k</i>
П _d Ц.	depth of the recervoir	<u></u>	mean monthly value of the variable i at month <i>i</i>
II _{dr}	depth of the reservoir deily global insolation on a horizontal surface	θ.	vector of nodal temperatures at time t
ПG	udily global insolution of a horizontal surface	о _г А	concrete temperature
$H_{G,0}$	extraterrestrial daily global insolation on a norizontal	0 0	air temperature
	surface	0a	all temperature
H_r	relative humidity	$\theta_{a,i}$	mean annual air temperature at month i
h	convection coefficient	$\theta_{a,y}$	
h_w	latent heat of evaporative water	θ_{dp}	dew point temperature
I_G	hourly global insolation on a horizontal surface	θ_{sk}	sky temperature
$I_{G,o}$	extraterrestrial hourly global insolation on a horizontal	θ_{w}	water temperature
	surface	$\theta_{w,b}$	mean annual water temperature at the bottom of the
I _{T G}	hourly global insolation on a tilted surface		reservoir
I _h	hourly beam insolation on a horizontal surface	$\theta_{w,s}$	mean annual water temperature at the surface of the
ľ.	hourly diffuse insolation on a horizontal surface		reservoir
I	creen compliance function	λ	thermal conductivity
ј К	aged_adjusted effective bulk modulus of concrete	ρ	density
K _{c,adj}	stiffness matrix	σ_c	concrete stress
KS V	thormal conductivity matrix	0	creep coefficient
NT V	daily global clearness index	т d	latitude
\mathbf{K}_t	ually global cleathess index	Ψ ω	solar hour angle
к _t 1.	hourry global cleatiness muex		sunrise hour angle
К _d	nourly diffuse fraction	ω_0	sumise nour angle
n _s	notional size		

IPCC emission scenarios. Climate predictions by a given GCM or RGM and an emissions scenario are denoted as climatic scenarios.

Climate change could affect several systems and sectors such as water resources and management, food, forest products, coastal systems and low-lying areas, industry, settlement, society or human health [12]. Changes in temperature may also have significant impacts on the stress field of the structures which can rise structural and non-structural damage, such as cracking or an increase of its displacements. Consequently, the effect of the future temperature increase should be considered during the design phase of new structures and the adoption of adaptation strategies in existing infrastructures.

The integrity of built infrastructures will be affected in terms of direct structural damage and indirect losses of functionality [13]. The increase in temperatures and longer periods of drought may result in a subsidence of buildings [14] and additional loadings

Download English Version:

https://daneshyari.com/en/article/266327

Download Persian Version:

https://daneshyari.com/article/266327

Daneshyari.com