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a b s t r a c t

In vibration-based structural health monitoring, changes in the natural frequency of a structure are used
to identify changes in the structural conditions due to damage and deterioration. However, natural fre-
quency values also vary with changes in environmental factors such as temperature and wind. Therefore,
it is important to differentiate between the effects due to environmental variations and those resulting
from structural damage. In this paper, this task is accomplished by predicting the natural frequency of
a structure using measurements of environmental conditions. Five methodologies – multiple linear
regression, artificial neural networks, support vector regression, regression tree and random forest –
are implemented to predict the natural frequencies of the Tamar Suspension Bridge (UK) using measure-
ments taken from 3 years of continuous monitoring. The effects of environmental factors and traffic
loading on natural frequencies are also evaluated by measuring the relative importance of input variables
in regression analysis. Results show that support vector regression and random forest are the most suit-
able methods for predicting variations in natural frequencies. In addition, traffic loading and temperature
are found to be two important parameters that need to be measured. Results show potential for applica-
tion to continuously monitored structures that have complex relationships between natural frequencies
and parameters such as loading and environmental factors.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many vibration-based approaches in structural health monitor-
ing have been designed to identify changes in natural frequency
values for the purpose of detecting changes in structural conditions
that may indicate structural damage and degradation. In reality,
however, civil engineering structures are subject to environment
and operating effects caused by changes in temperature, traffic,
wind, humidity and solar-radiation [1–5]. Such environmental
effects also change natural frequency values, hence concealing
changes due to structural damage [6–10]. Therefore, it is important
to distinguish between changes due to structural damage and
changes resulting from environmental effects. This task is managed
observing then modeling dependencies of natural frequencies on
environmental parameters [11]. The prediction of natural frequen-
cies of structures under environmental changes has been studied
using methods such as linear regression analysis, artificial neural
networks and support vector regression.

Multiple linear regression (MLR) was employed to predict
changes in natural frequencies of the Alamosa Canyon Bridge
(USA) due to environmental temperature variation [9] with natural
frequencies formulated as a linear function of temperature data. It
was found that the changes in the frequencies were linearly corre-
lated with temperature taken from different locations on the
bridge. Peeters et al. [12] conducted a 1-year monitoring study
for the Z24-Bridge (Switzerland) before it was deliberately dam-
aged, applying a linear regression analysis to distinguish normal
frequency changes from abnormal changes due to damage. Also,
for this concrete box girder bridge, Peeters and Roeck [13] applied
an autoregressive method with exogeneous inputs (ARX) to predict
the bridge natural frequencies, where no relationship was found
between natural frequencies and wind, rainfall and humidity. Liu
and Dewolf [3] simulated the varying natural frequencies under
temperature changes using a linear regression analysis, concluding
that the long-term variations of natural frequencies are closely
related to the variation in in-situ concrete temperature for the
three frequencies they measured. The MLR method has also been
used to predict natural frequencies of suspension bridges and a
footbridge using long-term monitoring data [11,14].
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Artificial neural networks (ANNs) have been successfully
applied in fields such as pattern recognition [15], artificial intelli-
gence [16] and civil engineering [17–20]. For long-term monitoring
of structures, ANNs have been employed to predict time-depen-
dent natural frequencies of a structure in order to eliminate the
environmental effects on vibration-based damage detection proce-
dures. For example, Ni et al. [21] applied an ANN to formulate the
correlation between the natural frequencies and environmental
temperatures taken from the cable-stayed Ting Kau Bridge (Hong
Kong). Zhou et al. [22] further investigated the performance of
the ANNs formulated using the early stopping technique by con-
structing three different kinds of input, including mean tempera-
tures, effective temperatures and principle components (PCs) of
temperatures. The results indicated that when a sufficient number
of PCs were taken into account, the ANN using temperature PCs as
inputs predicted natural frequencies more accurately than that
when using the mean temperatures. More studies on ANNs for
the prediction of structural responses are found in Refs. [22–25].

Support vector regression (SVR) is an application form of sup-
port vector machines that is a learning system using a high dimen-
sion feature space [26,27]. An attractive characteristic of SVR is
that instead of minimizing the observed training error such as with
MLR and ANNs, SVR involves minimizing the generalized error
bound in order to achieve good performance. The generalized error
bound is the combination of the training error and a regularization
term that controls the complexity of prediction functions. A good
overview of SVR is given in [28,29]. SVR has been successfully
employed in fields such as text categorization and pattern recogni-
tion as well as structural health monitoring [27,30]. Ni et al. [31]
applied SVR to predict natural frequencies of the cable-stayed Ting
Kau Bridge (Hong Kong) subjected to temperature variations taken
from 1-year measurement data, the method exhibiting better pre-
diction capability than the MLR method. Also using measurement
data of this bridge, Hua et al. [32] combined principle component
analysis (PCA) and SVR to simulate temperature–frequency corre-
lations. It was found that the SVR method trained using the PCs
of measured temperature data outperformed that trained using
measured temperature data directly.

The methodologies used above are based on parametric func-
tions that specify the form of the relationship between inputs
and a response (output) but in many cases, the form of the rela-
tionship is unknown. Regression tree (R_Tree) methods offer a
non-parametric alternative [33] that has been used extensively in
a variety of fields. The method has been found to be especially use-
ful in biomedical and genetic research, speech recognition and
other applied sciences [34]. Recent studies in the machine-learning
field found that significant improvements in prediction accuracy
have resulted from growing an ensemble of trees in a random
way, a methodology called random forest (RF) [35]. It has been
demonstrated that RF has improved prediction accuracy in com-
parison to other regression methods [36] but additionally provides
measures of variable importance for each input variable [37,38].
This method has not been evaluated for its applicability to struc-
tural health monitoring, so this paper investigates the performance
of RF on predicting natural frequencies through a case study of a
suspension bridge.

The studies mentioned above have proposed methodologies for
predicting the dynamic responses of bridges, but none has com-
pared methodologies for prediction accuracy. This paper compares
five methodologies – multiple linear regression, artificial neural
networks, support vector regression, regression tree and random
forest – in terms of their ability to predict natural frequencies of
a suspension bridge. Confidence intervals are then defined for the
best method to differentiate the effects due to environmental
changes from those caused by structural damage. Furthermore,
the individual effects of temperature, wind and traffic loading on

the natural frequency responses of the bridge are evaluated using
the variable importance metric in regression analysis.

2. Methodologies for predicting natural frequencies of the
bridge

2.1. Multiple linear regression (MLR)

Assuming that a response variable y (for example natural fre-
quency) is linearly related to the p input variables (for example
temperature, wind and traffic loading) x1, . . ., xp so that

y ¼ b0 þ
Xp

i¼1

bixi þ e: ð1Þ

This relationship is known as a linear regression analysis, where bi

is the regression coefficient associated with the ith input variable xi

and e the random error with mean zero and variance r2. Using the
dataset of n observations in measurement time series, the unknown
coefficients bi are determined using the least-squares method.

2.2. Artificial neural networks (ANNs)

Artificial neural networks can be used as a nonlinear regression
method to predict the natural frequency of a bridge. ANN is a two-
stage regression in which the first stage is to create derived fea-
tures Zm, represented by hidden layer, from linear combinations
of the inputs and the second stage is to model the output Ym as a
function of linear combinations of the Zm. Zm could be considered
as a basis expansion of the original input X.

Zm ¼ /ða0m þ aT
mXÞ; m ¼ 1; . . . ;M;

Tk ¼ b0k þ bT
k Z; k ¼ 1; . . . ;K;

f kðXÞ ¼ Tk þ e; k ¼ 1; . . . ;K;

ð2Þ

where Z = (Z1, Z2, . . ., ZM), /(v) is the activation function which is
usually chosen to be the sigmoid /(v) = 1/(1 + e�v), e the random
error, ai and bi are unknown parameters. Given a training set {xi, yi}
(i = 1, . . ., N), the ANN regression model is formulated by searching
these unknowns so that the sum-of-squared errors as a measure
of fit reaches a minimum value.

Rða; bÞ ¼
XK

k¼1

XN

i¼1

ðyik � f kðxiÞÞ2 ð3Þ

The generic approach to minimizing, R(a, b), is by gradient
descent, called back-propagation. A two-layer back-propagation
neural network (BPNN) is employed to predict the natural frequen-
cies of a structure. BPNN is first trained using the training set in
order to formulate the relationship between the natural frequen-
cies and environmental factors including direct loading such as
traffic. BPNN is composed of one hidden layer and one output layer
with a tan-sigmoid transfer function in the hidden layer and a lin-
ear transfer function in the output layer. The tan-sigmoid transfer
function is capable of capturing the nonlinear relationship between
input variables (in our example three of them) and output vari-
ables (in our example individual natural frequencies).

An important parameter to be determined when using BPNN for
prediction tasks is the optimal number of hidden nodes in the hid-
den layer. A network with too few hidden nodes might not have
enough flexibility to capture the nonlinearities in the relationship
while a network with too many hidden nodes may have a tendency
to overfit the training data.
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