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a b s t r a c t

This paper presents a model for the analysis of composite beams in which the constrained kinematics
encompasses the overall shear deformability, warping of the slab cross section and of the steel beam
and partial shear interaction between slab and girder. The warping functions are obtained by considering
the problem of unrestrained thin-walled members subjected to self-equilibrated elementary load
schemes. The governing equations are derived, according to the stiffness method, both in the weak
and strong forms starting from the Virtual Work Theorem which makes it possible to consistently obtain
the resultants of stresses, the applied forces and the inertia involved in the problem. The analytical solu-
tion is obtained from the governing differential equations and the relevant boundary conditions exploit-
ing exponential matrices. Some simple applications show the capability of the model to accurately
describe both the global behaviour of composite beams, in terms of displacements and stress resultants,
and local effects, in terms of normal stresses. The comparisons with results obtained with a refined shell
finite element model are very satisfactory.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Steel–concrete composite beams are widely employed in many
civil engineering applications, such as decks in buildings, steel
framed structures and bridges. When a concrete slab is coupled
to a steel beam the advantages of both materials are combined
and the mechanical behaviour of the composite member is opti-
mised. In the case of bridge decks, the concrete slab is very large
and thin while the steel member is formed by two or more I-beams
or box girders with high and very thin webs. The composite action
is assured by the connection at the slab–beam interface which has
to transfer the shear force between the two components. This is
usually constituted by stud connectors, welded at the top flange
of the steel girder, characterised by certain shear deformability.
This system does not completely prevent relative longitudinal dis-
placements (slip) between the two components while practically
avoid their separation (uplift).

An accurate evaluation of the beam deflection, forces on the
connection, and stresses on the slab and steel beam, which are
required for many verifications (e.g., serviceability limit states, fati-
gue assessment, some ultimate limit states), cannot be obtained
with traditional beam theories based on the assumption of the

preservation of the plane cross section. As an alternative to Finite
Element (FE) models based on planar or solid elements, the analy-
sis of such structures may be performed with higher-order beam
models able to capture the effects of the deformable connection,
the shear deformability of the overall cross section and the
shear-lag produced by the warping of the slab and steel beam
cross-sections.

The theoretical literature on steel–concrete composite beams is
impressive, dealing with different analytical approaches, solution
formulations, types of analyses and applications. A real state of
art is beyond the scope of this paper and a short literature review
is reported focusing on the theoretical modelling. Starting from the
seminal paper by Newmark et al. [1], in which the composite beam
is modelled by coupling two Euler–Bernoulli members by means of
a deformable shear connection distributed along their interface,
many beam theories have been developed to account for different
kinematic aspects. Models accounting for the uplift were devel-
oped by several authors who demonstrated that the global
response of a composite beam is rather unaffected by the uplift
[2] whereas local uplift effects induced by concentrated loads
may be important as shown by Gara et al. [3] on the basis of their
displacement based novel formulation. With regard to the shear-
lag effect many models were developed, some accounting only
for the warping of the slab and others also for that of the steel
flanges; among the first, Dezi et al. [4–6] described the slab
warping by means of shape functions derived for composite decks
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with twin I-girders or single box-girder according to the Reissner
approach [7] which is still widely adopted in several recent higher
order models for homogeneous beams [8–10]. The above men-
tioned models are appropriate to investigate local effects due to
the slab–beam connection and to catch the stress concentration
on the slab or steel flanges due to shear-lag but cannot adequately
describe the overall deformability of the composite beams which is
strongly influenced by shear deformability, especially in the case of
continuous viaducts with reduced span-to-depth ratio.

By assuming that shear forces on the concrete slab and the steel
beam are proportional to their stiffness, Xu and Wu [11] developed
a model where slab and beam behave as two Timoshenko elements
in which shear deformations and flexural rotations are constrained
to be equal [12]. Ranzi and Zona [13] considered an Euler–Bernoulli
beam for the concrete slab and a Timoshenko beam for the steel
member since the shear deformation of the slab is expected to be
negligible due to its slenderness. These models introduce con-
straints that are acceptable in most of the civil engineering appli-
cations but that may lead to unrealistic results in some cases; for
instance in composite elements made of materials with high stiff-
ness contrast, the cross section rotations of the two elements may
be significantly different. Several authors developed models
accounting for shear deformability of both components coupling
two Timoshenko beams by means of a deformable shear connec-
tion without introducing any constraint on the cross section rota-
tions [14,15]. Despite these models can predict the global
behaviour with acceptable accuracy, they cannot capture the
non-uniform stress distribution (shear-lag effect) as the cross sec-
tion warping is neglected.

A model, accounting for both shear deformation and cross sec-
tion warping of the two components, has been recently developed
by Chakrabarti et al. [16] making use of the higher-order shear
deformation theory proposed by Reddy [17] for laminated compos-
ite beams. The higher-order terms introduced in the displacement
field are represented by two a-priori fixed functions (second and
third order polynomials) which can only describe the cross section
warping within the depth; this cannot capture the typical shear-lag
due to the in-plane behaviour of slab and flanges which can be
significant for beams composed by a wide slab connected to box
or I-shaped girders along longitudinal lines, such as in typical com-
posite bridge decks. Although more accurate models have been
recently developed for multilayered beams by Vo and Thai [18]
and by Silvestre and Camotin [19], higher-order models for steel–
concrete beams with deformable interlayer connection are not
available in the literature.

Besides the theoretical approaches, the literature is also rich of
numerical procedures to implement the models previously
described. Different types of analyses, such as linear elastic and vis-
coelastic [20], non-linear [21–23], dynamic and buckling [11] have
been developed. Closed form solutions are available only for some
cases [24–27] while, in general, a number of numerical solutions
have been proposed based on different methods such as the direct
stiffness approach (stiffness matrix) [28,29], the finite element
method [15,30–34] and the finite difference formulation [4,5].

In this paper a higher-order formulation for the analysis of com-
posite beams with partial shear interaction between the slab and
the girder is proposed. The model, which can be considered a gen-
eralisation of the Newmark model [1], takes into account both the
overall shear deformability of the components [12] and the warp-
ing of the slab cross section and the steel beam [7]. Two different
rotations are considered to avoid introducing a constraint between
the two components. As for the warping of the cross section, spe-
cial shape functions are obtained by considering the problem of
unrestrained thin-walled members subjected to self-equilibrated
elementary load schemes. In particular, three different functions
are introduced: one for the membrane action of the concrete slab,

due to the longitudinal flow at the shear connection, and other two
functions for the steel element, to catch separately the warping
due to the shear force component resisted by the steel beam and
to the shear flow at the slab–beam interface [6,35,36]. The govern-
ing equations are derived, according to the stiffness method, both
in the weak and strong forms starting from the Virtual Work The-
orem which makes it possible to consistently obtain the resultants
of stresses, the applied forces and the inertia involved in the prob-
lem. The rigorous solution of the system of differential equations
governing the problem is obtained exploiting exponential matri-
ces. This method, furnishing the exact formulation of the solution
without requiring any discretisation of the beam, is used to deter-
mine the solution of the proposed applications according to the
stiffness method deriving the stiffness matrix and the reactions
of fixed-end beams. The model is validated with reference to a real-
istic two-span bridge by comparing solutions with results provided
by refined shell finite element models.

2. Analytical model

2.1. Kinematics

A prismatic composite girder with symmetric cross section,
obtained by connecting a steel beam with a concrete upper slab,
is considered (Fig. 1). The external loads are assumed to be applied
in compliance with the geometric symmetry in order to avoid tor-
sion and transverse displacements. An orthonormal global refer-
ence frame {0; X, Y, Z} is chosen so that the beam axis is parallel
to the direction Z and the symmetry plane of the beam lies on
the co-ordinate plane YZ. The slab is a prismatic element with a
rectangular cross section of width 2B and thickness tc and is con-
nected to the steel girder along two lines at coordinates ð~x; ~yÞ
and ð�~x; ~yÞ; it is considered to behave like a solid element under
bending and like a thin-walled element under membrane actions.
The steel component is considered to be a thin-walled element
because of its three orders of dimensions (length, mean cross sec-
tion dimension and wall thickness); more specifically, it is consti-
tuted by n plane walls, with constant thickness ti, for which the
local abscissa ni e [0, Li], running along the section contour, is
introduced (Fig. 1(b)). Despite local abscissas are defined for every
wall, if not differently specified, index i will be omitted hereafter
for ease of notation.

By assuming that the composite cross section is transversally
rigid, and that the interface shear connection is stiff against uplift,
the vertical admissible displacement of each point is equal to the
beam axis deflection v0

mðx; y; zÞ ¼ m0ðzÞ ð1Þ

With reference to the concrete slab, the following admissible longi-
tudinal displacements are considered:

wcðx; y; zÞ ¼ acðx; yÞ �wcðzÞ ð2Þ

where

aT
c ðx; yÞ ¼ ½1 y wcðxÞ � ð3Þ

is a geometric vector in which wc is a known warping function, and

wT
c ðzÞ ¼ ½wc0ðzÞ /cðzÞ f cðzÞ � ð4Þ

is the vector that groups together the slab generalised displace-
ments, namely the longitudinal displacement wc0 measured at the
Z axis, the rotation /c with respect to the X axis and the warping
intensity fc. For the steel beam, the longitudinal displacements are
referred to the wall contour and are defined as

wsðni; zÞ ¼ asðniÞ �wsðzÞ i ¼ 1; . . . ;n ð5Þ
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