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a b s t r a c t

Dynamic plate bending problems appear on civil, mechanical, aerospatial and naval applications. The
complexity involved in the dynamic response of plates brings many challenges from a mathematical
standpoint. In this work, the transient dynamic analysis of elastic shallow shells under uniformly dis-
tributed pressure loads, using a dual reciprocity boundary element formulation, is presented. A boundary
element formulation based on a direct time-domain formulation using elastostatic fundamental solutions
was used. Effects of shear deformation and rotatory inertia were included in the formulation. Shallow
shells are modeled coupling boundary element formulation of shear deformable plate and two-dimen-
sional plane stress elasticity. Domain integrals related to inertial terms were treated using the Dual Reci-
procity Boundary Element Method. Numerical examples are presented to demonstrate the efficiency and
accuracy of the proposed formulation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Complex spatial structures as found in aerospatial, naval and
automotive applications, are made of assembled plates and shells.
In general, these structures have constructive details such as holes,
folds and joint stiffeners and difficult mesh generation when finite
element method based are models are used. Moreover, mesh
refinement is required in the neighborhood of such details, arising
the computational cost. For this reason, the use of the boundary
element method represents and valid alternative to domain dis-
cretization methods for the analysis of these kind of structures
[30]. Aerospatial, naval and automotive structures, among others,
are required to support dynamic loads. The complexity involved
in the dynamic response of shells is challenging and problematic
from a mathematical standpoint. In general, numerical methods
represent the only way to obtain approximate solutions for
dynamic analysis. Dynamic analysis of shells using the Finite Ele-
ment Method (FEM) is well established [32,1,10,16,14,17]. Howev-
er, FEM requires refined meshes since the length of the elements
should be proportional to the size of the wavelength. This means
a high number of degrees of freedom, which requires a significant
computational effort.

Within the last decade meshless methods for the dynamic ana-
lysis of plates and shells have been proposed in order to overcome
problems related with domain discretization methods
[3,7,31,9,2,29]. However, their most important drawback of mesh-
less methods relies on their high computational costs and occa-
sional instabilities that appear in certain meshfree methods.

Alternatively, the Boundary Element Method (BEM) has
emerged as an accurate and efficient numerical method for shear
deformable plate and shell static analysis [30,15,4,28,27]. BEM
has become important in the structural analysis of complex
geometries such as ships and aircraft, where the use of domain dis-
cretization methods such as FEM have a high computational cost.
Unlike to domain discretization techniques, the process of dis-
cretization in the Boundary Element Method (BEM) takes place
only on the boundary, so that the system of equations is much
smaller and less time is required to identify a solution to a prob-
lem. Moreover, in domain discretization techniques, finer meshes
must be used in high stress concentration regions. In BEM, no
interpolation are needed for stress calculation and the quality of
the solution is solely dependent on the quality of boundary solu-
tion for displacement. As such, a decrease in unwanted information
is present than in other numerical techniques provided that interi-
or domain variables appear where only they are required. Howev-
er, time consumed by FEM and BEM for a specific analysis is
strongly depend on how the numerical method is computationally
implemented. As we have not worried about the efficiency of the
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code at this stage, a comparison of time consumed by FEM and
BEM represent a difficult task.

Dynamic BEM analysis of shear deformable plates using elasto-
dynamic fundamental solutions, Laplace or Fourier transforma-
tions of these fundamental solutions were used in [8,6,13,24–26].
In [20–22,12] a time-domain direct BEM formulations based on
elastostatic fundamental solutions for dynamic analysis of shear
deformable plates are presented. To date, very few publications
demonstrate the dynamic analysis of plate or shell structures using
the boundary element method analysis. A boundary element
method formulation for dynamic analysis of shells represents a
contribution to the structural analysis of complex structures.

This work presents the dynamic analysis of shear deformable
elastic shallow shells under uniformly distributed pressure loads,
using a boundary element formulation. This formulation is based
on direct time integration and elastostatic fundamental solutions.
Effects of shear deformation and rotatory inertia are included in
the formulation. Shells were modeled by coupling the boundary
element formulation for shear deformable plates based on the
Reissner plate theory and two-dimensional plane stress elasticity,
as presented in [4,28]. The Dual Reciprocity Boundary Element
Method for the treatment of domain integrals involving inertial
mass, was used. In order to obtain the time response, the Houbolt
integration scheme was used. Numerical examples are presented
and results were compared with those obtained using finite ele-
ment models.

2. Shallow shell dynamic equations

Consider a shallow shell of uniform thickness h, mass density q
and curvature radius Rab, occupying an area X, in the x1x2 plane,
bounded by a contour C ¼ Cw

S
Cq with C ¼ Cw

T
Cq � 0, as pre-

sented in Fig. 1. The dynamic bending response for the shallow
shell was modeled coupling the classical Reissner plate theory
and the two-dimensional plane stress elasticity as presented in
[27].

Equations of motion for an infinitesimal plate element are given
by [16]:

Lb
ikwk þ q�i ¼ Kb

ik €wk þKbm
ia €ua ð1Þ

Lm
abub ¼ Kbm

ab
€wb þKm

ab
€ub ð2Þ

Indicial notation is used throughout this work. Greek indices
vary from 1 to 2 and Latin indices take values from 1 to 3. Einstein’s
summation convention is used unless otherwise indicated. In these
equations, wa represents rotations with respect to x1 and x2 axes,
and w3 represents transverse deflection; €wa denotes angular
accelerations corresponding to x1 and x2 axes, respectively, €w3

represents the transverse linear acceleration; ua and €ua represents
membrane displacements and accelerations along xa axis, respec-
tively; Tensors Kb

ij, Kbm
ij and Km

ij are defined as: Kb
ab ¼ I2dab and

Kb
33 ¼ I0; Kbm

ab ¼ I1dab; Km
ab ¼ I0dab and Km

3i ¼ Km
i3 ¼ Kb

3i ¼ Kb
i3 ¼

Kbm
3i ¼ Kbm

i3 ¼ 0; dab is the Kronecker’s delta and Ii are the mass
inertias [16]. In these equations Lb

ik and Lm
ik operators are given in

[4] and q�i is the equivalent body force (q�a ¼ 0):

q�3 ¼ q3 � Bðj11 þ mj22Þua;a � Bðj2
11 þ mj2

22 þ 2mj11j22Þw3 ð3Þ

where q3 is a distributed transverse load and jab ¼ 1=Rab represents
the curvature tensor of the shell surface.

3. Boundary integral formulation for shallow shells

The derivation of the integral formulation for Eqs. (1) and (2) is
based on application of the boundary element method to the
Reissner plate theory as presented in [23], where the integral rep-
resentations related to the governing equations for bending and
transverse shear stress resultants are derived by using the weight-
ed residual method, and making use of the Green’s identity. Thus,
by integration of Eq. (1), the following equations are obtained:

cijwjðx0Þþ
Z

C
Pijðx0;xÞwjðxÞdC

¼
Z

C
Wijðx0;xÞpjðxÞdC

�
Z

C
jabB

1�m
2

uaðxÞnbþubðxÞnaþ
2m

1�m
ucðxÞncdab

� �
Wi3ðx0;xÞdC

þ
Z

X
jabB

1�m
2

uaðXÞWi3;bðx0;xÞþubðxÞWi3;aðx0;XÞ
�

þ 2m
1�m

ucðxÞWi3;cðx0;XÞdab

�
dX

�
Z

X
jabB½ð1�mÞjabþmdabjcc�w3ðxÞWi3ðx0;XÞdX

þ
Z

X
Wi3ðx0;XÞq3ðxÞdXþ

Z
X

Wijðx0;xÞKb
jk €wkðXÞdX

þ
Z

X
Wiaðx0;XÞKbm

ab
€ubðXÞdX ð4Þ

Similarly, the derivation of the integral formulation for Eq. (2) is
based on application of the boundary element method to the
two-dimensional elasticity equations, as presented in [4]. Thus, by
integration of Eq. (2) the following equations are obtained:

chaðx0Þuaðx0Þ þ
Z

C
Thaðx0; xÞuaðxÞdC

þ
Z

X
Uha;bðx0;XÞB½jabð1� mÞ þ mdabjcc�w3ðXÞdX

¼
Z

C
Uhaðx0;xÞtaðxÞdCþ

Z
X

Uhaðx0;XÞKm
ha€uaðXÞdX

þ
Z

X
Uhaðx0;XÞKbm

ha €waðXÞdX ð5Þ

In these equations, x0 and x represent collocation and field points,
respectively; Wik and Pik are fundamental solutions for shear
deformable plates [23]; Tha and Uha are the fundamental solutions
for plane stress [11]; na is the unity vector normal to the boundary
at field point. x0 2 C are source points and x 2 C and X 2 X repre-
sent field points. The value of cijðx0Þ is equal to 1

2 dij when x0 is located
on a smooth boundary. These equations represent five integral
equations, the first two in (4) ði ¼ a ¼ 1;2Þ are for rotations, the
third ði ¼ 3Þ is for the out-of-plane displacement and two in (5)
ða ¼ 1;2Þ for in-plane displacements, which can be used to solve
shear deformable plate shallow shell bending problems.
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Fig. 1. Shallow shell geometry.
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