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a b s t r a c t

A linear-elastic theoretical formulation is presented for the complete determination of the state of stress
in large thin-walled liquid-filled vessels in the form of multi-segmented spherical shells. The transfer of
membrane forces between adjacent shell segments is such that only vertical equilibrium of stress resul-
tants needs to be preserved. The edge effect in the vicinity of the shell junctions is quantified on the basis
of an approximate but accurate bending theory for spherical shells. The effectiveness of the developed
formulation is demonstrated by consideration of a numerical example. Agreement with the results of
finite-element modelling is excellent, showing that the presented theoretical formulation is a reliable,
computationally efficient and accurate means of obtaining stresses in large multi-segmented spherical
vessels.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thin synclastic shells of revolution find widespread application
in the storage of liquids [1], on account of the structural efficiency
of shells of double curvature, which allows very thin shells to resist
relatively large hydrostatic pressures without rupture. Contain-
ment shells of double curvature come in a variety of shapes, from
spherical, ellipsoidal, toroidal and other basic mathematical pro-
files, to combinations of these profiles, giving an almost limitless
range of possibilities. The construction may be in thin metal, or
in prestressed concrete. However, where compressive stresses
exist, these structures are vulnerable to local buckling on account
of the thin-ness of the shell, particularly in the case of metal con-
struction. The thickness of the shell may be enhanced in such zones
to counter any tendencies for local buckling, or stiffeners may be
added to the basic shell.

Fig. 1 shows a novel form of construction for high-capacity
liquid-storage vessels. The construction consists of an assembly
of spherical shell segments of different radii, whose centres of cur-
vatures all lie on the axis of revolution of the vessel taken as a
whole. Thus the segments are axisymmetric in shape, where the
uppermost segment is actually a cap, and successive lower

segments are typically spherical frusta. Let us denote the various
shells regions or segments, from top to bottom, by S1; S2; S3 and
so forth. The junctions between these shell segments are denoted
by J1; J2; J3 and so forth. The radii of shell S1; S2; S3, etc. are
denoted by a1; a2; a3 and so forth. As is usual for shells of revolu-
tion, the angular coordinate / (which is the angle between the nor-
mal to the shell midsurface at any given point, and the axis of
revolution of the shell assembly) is used to define the position
of any point on the shell. For the shell cap S1 (uppermost portion
of the assembly), the angular coordinate of the edge of the cap is
denoted by /10. For all other segments Si (i = 2, 3, 4, etc.) below
this, the upper and lower edges of segment Si are defined by the
coordinates /i1 and /i2 respectively.

Starting from the central segment (S4 in our illustration), the
addition of segments S3; S2 and S1, with slope enhancements of
ð/32 � /41Þ, ð/22 � /31Þ and ð/10 � /21Þ at junctions J3; J2 and J1
respectively, adds height and additional storage capacity to the
basic spherical vessel of radius a4. Similar enhancements in capac-
ity are also achieved by the addition of segments S5; S6 and S7 in
the lower part of the vessel. The overall result is a spherical assem-
bly of relatively large storage capacity. It is interesting to note that
if this was a pressure vessel, to achieve the same storage capacity
while keeping the vessel of constant radius would require a sphere
of radius bigger than a4, which would attract higher shell stresses
(these are proportional to the radius), but in the present case of
liquid containment, the stress-reducing benefit of radius limitation
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through segmental construction is offset by the higher hydrostatic
pressures associated with the taller segmented vessel.

The slope and curvature discontinuities at the shell junctions
attract bending disturbances [2–5], but the inward pointing kinks
in the profile could have the effect of stiffening the shell response
there, resulting in a beneficial lowering of hoop stresses. From an
aesthetics point of view, the ‘‘lobed’’ or segmented geometry of
the storage vessel has a pleasing appearance, which might favour
the adoption of this type of vessel in locations where appearance
is a major consideration.

The membrane theory of axisymmetrically loaded shells of rev-
olution is quite appropriate for the calculation of the linear elastic
response of the shell under internal hydrostatic pressure. This the-
ory assumes there is no bending in the shell. However, and as is
well-known [2–5], the membrane theory becomes inadequate in
the vicinity of geometric discontinuities of the type J1; J2; J3, etc.,
and the more comprehensive bending theory of shells must be
invoked.

A useful approach is to regard the membrane solution (for the
applied surface loading on the shell) as an approximate particular
solution of the differential equations describing the behaviour of
the shell, and a bending correction (system of axisymmetric bend-
ing moments and shearing forces applied along the shell edge) as
the homogeneous solution [2–5]; the net response of the shell is
then obtained as the sum of the membrane solution and the bend-
ing correction (or edge effect). Several bending theories of varying
degrees of complexity have been proposed for determining the
state of stress in shells of revolution [2,3]. However, it is important
to select an approach that is amenable to practical computations,
and that is sufficiently accurate.

Not many analytical studies on the stress and deformation
behaviour of liquid-containment shells of revolution are being
reported in the literature nowadays, largely due to the fact that
the Finite Element Method (FEM) has become the preferred
method for investigating shell behaviour [6–8], owing to its versa-
tility in handling irregular features of the structure, and in model-
ling non-linear behaviour. However, the analytical approach can
still be extremely useful in those instances where the behaviour
of the shell is essentially linear, and convenient mathematical solu-
tions of the differential equations (governing shell behaviour)
exist. The analytical approach, where possible, has the advantage
of providing stress information without the need for potentially
expensive numerical modelling, and shedding deeper insights into
the behaviour of the shell simply by studying the form of the math-
ematical solutions. Once the analytical results are there, they may
be treated as formulae, ready to be directly applied to other similar
problems. Analytical solutions are also vital in checking FEM
results.

Where smoothness conditions prevail, the membrane solution
on its own can be a very useful tool for exploring the state of stress
in liquid containment vessels in the form of arbitrary shells of rev-
olution [9], or unusual shapes such as the triaxial ellipsoid [10].
However, where the shell geometry features discontinuities, such
as sudden changes in shell thickness [11,12], a more general
formulation accounting for bending effects clearly has to be
employed.

Looking at the more recent literature on liquid-containment
vessels, we find that cylindrical steel tanks have been studied the
most. Wind-induced buckling of cylindrical tanks has received a
considerable amount of attention [13,14]; such tanks are particu-
larly vulnerable when they are empty (the presence of liquid tends
to stabilise the shell against the effects of the wind). Tanks that are
in close proximity of each other attract additional problems of
wind interference, a phenomenon that has been the subject of
some very recent studies [15,16]. Other studies have considered
the response of liquid-storage cylindrical tanks to seismic excita-
tion [17–19]. The collapse behaviour of large cylindrical steel tanks
has also received attention [20], to provide a better understanding
of ultimate limit-state design of such vessels. Much of the research
on metal containment shells has now been codified [21,22].

At wastewater treatment works, egg-shaped digesters (with
their smoothly varying geometry) offer a solution that is superior
to cylindrical tanks and more conducive to the efficient mixing of
sludge. The stresses and deformations in egg-shaped vessels have
been investigated on the basis of the membrane theory and a sim-
plified bending theory for shells of revolution [23,24]. A novel form
of sludge digester in the form of a parabolic ogival shell has also
been proposed [25], and investigated on the basis of a membrane-
theory formulation, leading to some interesting insights on the
behaviour of this shell form, and a set of design recommendations.

After cylindrical steel tanks, conical steel tanks come second in
having been studied the most, on account of their ease of fabrica-
tion. Most previous studies on conical tanks have either sought to
understand stability behaviour [26], or to develop appropriate
design procedures [27]. Other studies have concentrated on under-
standing shell-junction effects [28,29], or the effects of external
pressure [30]. The stability of vessels in the form of conical-cylin-
drical assemblies is a subject that has also received a considerable
amount of attention [31,32].

For horizontal tanks, deviations from the normal cylindrical
shape have been shown to offer enhanced structural efficiencies
in comparison with conventional profiles [33]. Another class of
vessel that has been studied, albeit to a lesser extent, is that of
toroidal tanks [34], which find application for the storage of lique-
fied petroleum gas (LPG), among others. Depending on the type of
cross-section chosen for the toroid, the stress distribution and
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Fig. 1. Multi-segmented spherical vessel: (a) shell segments, junctions and
corresponding geometric parameters; (b) external appearance of the vessel.
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