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a b s t r a c t

Performance of continuation methods together with local filter operators in context of the density-based
formulations for topology optimization problems is studied. In order to obtain binary discrete topologies,
the volume preserving Heaviside filter is used together with continuation schemes on material penaliza-
tion coefficient and filter parameters. Modifications to dual sequential optimization algorithms are pre-
sented to handle the increased non-convexity with Heaviside projection filter. Various continuations
schemes are studied on test cases that include large-scale minimum compliance and compliant mecha-
nism design problems. Finally, a continuation scheme is presented that yields good results in terms of
both binary discreteness and optimal performance.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades a number of topology optimization
methods have been developed and among these density-based for-
mulations [1–4], phase-field approaches [5,6], level set methods
[7] and evolutionary approaches [8–10] are some of the well-stud-
ied methods. Density-based topology optimization methods are
perhaps the most commonly used methods, where nodal or ele-
ment densities are considered as design variables, and the topology
is defined by density distribution of two or more phases of material
where the void phase is usually represented by zero density. Local
filter operators are typically used in such density-based formula-
tions: the filters ameliorates problems associated with the check-
erboards and other related instabilities, and in addition, provides
an intrinsic length scale which regularizes the problem formula-
tion and make the topology results mesh independent [11]. Filters
are typically used in conjunction with continuation methods on
material penalization parameters to obtain results that are discrete
and manufacturable.

In the context of mesh independent filters various filtering
schemes have been introduced including sensitivity filters [11],
density filters [12,13] and Helmholtz filters [14], among others.
Among these, sensitivity filters and density filters are the most
commonly used filters. In the density filter approach auxiliary vari-
ables termed density variables are introduced and the exact design
sensitivities are calculated using chain rule for a given filter. On the

other hand, in the sensitivity filter approach the design sensitivi-
ties are heuristically modified. Detailed description of various fil-
tering approaches can be found in Refs. [14,15]. Density filters
may not necessarily result in binary discrete designs due to the
boundary diffusion effects [14,16]. To achieve this goal the study
in Ref. [17] combined the density filter with an additional local fil-
ter termed Heaviside projection filter to further penalized interme-
diate densities so that binary discrete designs can be obtained. This
filter has been used in various applications and is shown to yield
binary discrete designs [18]. In the Heaviside projection filter, the
curvature of the filter is controlled using a filter parameter and this
filter approaches the Heaviside function as this parameter is
increased. The Heaviside filter is typically used in conjunction with
continuation schemes on this filter parameter wherein the filter
slowly approaches the Heaviside function. A potential drawback
of this scheme is that the constraints may be violated resulting
in oscillations in optimization iterations and in poor performance
of the optimizer as shown in Ref. [16]. To ameliorate the oscillation
issues associated with the original Heaviside projection filter a vol-
ume preserving Heaviside filter is introduced in Ref. [16]. Further-
more, the study in Ref. [18] introduced modification to the
optimization algorithm that eliminates the need for continuation
of filter parameters in the Heaviside projection scheme. However,
the effectiveness of this scheme in terms of consistently obtaining
discrete optimal designs is not well established.

Although the volume preserving Heaviside filter can be used
with or without continuation schemes, the benefits and drawbacks
of this filter together with various continuation methods is unclear.
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For instance, it is not evident which method will lead to a better
topology in terms of both binary discreteness and performance of
the final optimal design. In this investigation, the performance of
volume preserving Heaviside filters in conjunction with various
continuation methods that can be used for obtaining binary dis-
crete topologies is evaluated. A new continuation method is also
proposed that is shown to yield overall better designs. The use of
Heaviside filter leads to highly non-convex objective function
and to solve the resulting optimization problems dual sequential
optimization algorithms are employed. Finally, modifications to
dual sequential optimization algorithms to handle the increased
non-convexity of the objective function are also presented. The
paper is organized as follows: in Section 2 the problem formulation
is presented together with the filtering methods and convexity of
the problem is evaluated. In Section 3 various continuation
schemes are discussed. Dual sequential optimization methods that
are used in this study are presented in Section 4 and the test cases
are shown in Section 5. Finally, the important conclusions are pre-
sented in Section 6.

2. Problem formulation

In finite element setting, the topology optimization – minimum
compliance and compliant mechanism design – problems are
defined as follows:

min
x

f 0ðxÞ ¼ LT u

Subject to :

f 1ðxÞ ¼
1

V0

Xn

i¼1
~xiv i

� �
� V f 6 0

xi ¼ /iðxÞ 2 B ¼ f0 6 xi 6 1g; i ¼ 1;2; . . . ;n

Kð~xÞuð~xÞ ¼ P

ð1Þ

where xi 2 ½0;1�, i ¼ 1;2; . . . ;n are the design variables; ~xi ¼ /iðxÞ
are the auxiliary filtered variables that are also referred to as ‘‘phys-
ical density’’ variables; /i is a (local) filter operator (Fig. 1(a)); v i is
the volume of an element; V0 is the total volume of the domain con-
sidered; and V f is the target volume fraction. The system is also sub-
jected to equilibrium constraints: Kð~xÞuð~xÞ ¼ P, where K is the
global stiffness matrix, P is the applied load vector and u is the cor-
responding displacement vector. There are n elements within the
domain and each element has a density ~xi 2 ½0;1�. This formulation
is typically termed as density filter formulation and differs from the
sensitivity filter formulations that are also sometimes used in topol-
ogy optimization [15].

In the above density filter formulation, the physical density
variables, ~xi, are used for evaluating the stiffness (Kð~xÞ), and there-
fore, represents physical density. These variables are also used for
plotting the final topologies. Moreover, it is important to note that

the volume constraint function f 1 in Eq. (1) is written in terms of
the physical density variables ~xi. For solving the constrained opti-
mization problem in Eq. (1) a nested formulation is adopted [19],
wherein at each step the displacement is obtained by solving the
equilibrium conditions: Kð~xÞuð~xÞ ¼ P. Note that for minimum
compliance problems L ¼ P, whereas for compliant mechanism
design problems the vector L is all zero except for the degree of
freedom corresponding to the output-port where it is taken as 1.

2.1. Filters

Two desirable features in any density-based topology optimiza-
tion method are: (a) the topological features (e.g. minimum mem-
ber size) in the design should be explicitly controlled; and (b) the
designs should be discrete (binary solutions) with minimum inter-
mediate densities so that the final designs are manufacturable.
Restriction methods such as perimeter control [20,21], global and
local gradient constraints [11,22–24], and mesh independent fil-
ters [15] are typically used for obtaining mesh independent results
and for controlling minimum feature size. Among these methods,
the mesh independent filters are the most popular methods as they
are simple and computationally efficient. In addition, they also pre-
vent pathologies associated with checkerboards when using lower
order elements [11]. These filters are typically used in conjunction
with material interpolations approaches where the intermediate
densities are implicitly penalized [1,25].

A local density filter operator can be considered as a mapping
from the design variable space ðxÞ to the density variable space
ð~xÞ: i.e. x # ~x, and the mapping is carried out via local filter oper-
ator ð/iÞ (Fig. 1(a)). Two filtering schemes are considered in this
investigation: (a) commonly used density filter termed hat filter
(H-filter) [12,13], and (b) a volume preserving Heaviside filter
(HE-filter) [16]. The hat filter is defined by Eq. (2):

H-Filter : ~xi ¼ /t
i ðxÞ ¼

1P
k2Ni

wk

X
k2Ni

wkxk

� �
ð2Þ

Thus the mapping x # ~x in the H-filter is carried out via local fil-
ter operator /t

i . In the above filter definition, Ni is an index set of
local neighborhood the ith element and is given by Eq. (3) which
is based on Fig. 1(a):

Ni ¼ fk j jXk � Xijj 6 Rg ð3Þ

where R is the prescribed filter radius, Xk and Xi are the positions
vector of centroid of the finite elements. The filter weights can be
calculated using various methods [15]; in this study the weights
are obtained using a linearly decaying function and is given by Eq.
(4) which is based on Fig. 1(b):

wk ¼ 1� jjXk � Xijj
R

ð4Þ

Fig. 1. Local filter operator in a density based filtering scheme.
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