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a b s t r a c t

Buckling and postbuckling behavior of shear deformable anisotropic laminated composite beams with
initial imperfection subjected to axial compression is presented. The material in each layer of beams is
assumed to be linearly elastic, anisotropic and fiber-reinforced. The governing equations are based on
the higher order shear deformation beam theory with a von Kármán-type of kinematic nonlinearity.
Composite beams with the fixed–fixed, fixed–hinged, and hinged–hinged boundary conditions are con-
sidered. A generic imperfection function for one-dimensional composite beams is adopted to model var-
ious possible initial geometric (e.g., sine, local, and global type) imperfections. The nonlinear prebuckling
deformation and initial geometric imperfection of the beam are both taken into account. A numerical
solution of nonlinear partial–integral differential form in terms of the transverse deflection is employed
to determine the buckling load and postbuckling equilibrium path of composite beams. The results
obtained by combining the Newton’s iterative method with the Galerkin’s method are theoretically exact
from the transverse and longitudinal displacements for anisotropic laminated beams under the axial
compressive loads using the secondary parameter conversion technique, and they are validated by com-
paring with those available in the literature. The numerical illustrations are presented for the postbuck-
ling response of laminated beams with different types of boundary conditions, ply arrangements (layups),
geometric and physical properties. The results reveal that the geometric and physical properties and
boundary conditions have a significant effect on postbuckling behavior of anisotropic laminated compos-
ite beams.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite structures, like beams and plates, are broadly used in
various engineering applications, such as airplane wings, helicop-
ter blades as well as many others in the aerospace, mechanical,
and civil industries. Due to the outstanding engineering properties,
such as high strength/stiffness to weight ratios, the laminated
composite beams are likely to play a remarkable role in the design
of various engineering type structures and partially replace the
conventional isotropic beam structures. Interest in the structural
buckling and postbuckling analysis of anisotropic composite

laminated beams has led to a need for more accurate analysis
especially in the case of critical structures.

Many studies have observed the buckling and postbuckling
behavior of beam-type structures, and numerous attempts have
been made to predict such phenomenon for isotropic or orthotro-
pic beams. Theories of beams involve basically the reduction of a
three dimensional problem of elasticity theory to a one-dimen-
sional problem. Since the thickness dimension is much smaller
than the longitudinal dimension, it is possible to approximate the
distribution of the displacement, strain and stress components in
the thickness dimension. Based on the assumption that the axial
line of the beam is inextensible, Timoshenko and Gere [1] exam-
ined the postbuckling of compressed beam clamped at one end
and free at the other end and investigated it using the exact
expression for the curvature in the differential equation of the
deflection curve. Comer and Levy [2] proved that the inflatable
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beams can be considered as the usual Euler–Bernoulli beams. The
theory is applicable to slender beams and should not be applied
to thick or deep beams since it is based on the assumption that
the plane sections perpendicular to the neutral layer before bend-
ing remain plane and are perpendicular to the neutral layer after
bending, implying that the transverse shear and transverse normal
strains are zero. Wang [3] dealt with the buckling of the axial com-
pressive beams with the pinned–fixed ends using a shooting
method as well as a perturbation method. Torkamani et al. [4]
and Hori and Sasagawa [5] used the approximate second-order
analysis, such as the finite element method with large deflections
and with or without large strains. Li and Batra [6] investigated
the analytical relations between the critical buckling load of a func-
tionally graded material (FGM) Timoshenko beam and that of the
corresponding homogeneous Euler–Bernoulli beam subjected to
axial compressive load with simply supported, clamped and
clamped–free boundaries. Vo and Thai [7] developed a one-dimen-
sional displacement-based finite element method to accurately
predict the critical buckling loads of rectangular composite beams
with the corresponding mode shapes for various configurations.
Furthermore, Chia et al. [8] reported the structural responses of
generally-laminated composite columns subjected to uni-axial
compression and transverse load, and the closed-form expressions
were developed and presented to analyze the buckling and bend-
ing responses of generally-laminated composite beams with vari-
ous boundary supports based on the Euler–Bernoulli beam and
classical lamination theories. Emam and Nayfeh [9] and Nayfeh
and Emam [10] obtained an exact solution for the postbuckling
behavior of the composite beams with fixed–fixed, fixed–hinged
and hinged–hinged boundary conditions based on the Euler–Ber-
noulli beam theory. Emam [11] studied the static and dynamic
behavior of geometrically-imperfect laminated composite beams,
and as a result, its lateral deflection is obtained as a function of
the applied axial load, a parameter designating the laminate, and
imperfection. Using the Rayleigh–Ritz method, Gupta et al. [12]
predicted the postbuckling behavior of composite beams and com-
pared their solution with the results obtained from the finite ele-
ment analysis for general lay-up. Khdeir and Reddy [13] studied
the buckling behavior of cross-ply laminated beams with arbitrary
boundary conditions. The classical, first-, second- and third-order
shear deformation theories were used in the analysis. Khamlichi
et al. [14] presented the different formulations to the solution of
the large-deflection problem of a hinged–hinged elastic bar with
outside sway under axial compressive load, and they discussed
the effects of the axial strains and shear deformations using the
asymptotic expansion technique on the postbuckling behavior.
Matsunaga [15] analyzed the buckling stresses of the laminated
composite beams by taking into account the complete effects of
transverse shear, normal stress and rotary inertia. Aydogdu [16]
performed the buckling analysis of cross-ply laminated beams sub-
jected to different sets of boundary conditions by using the Ritz
method. The analysis was based on a three-degree-of-freedom
shear deformable beam theory. It is found that the postbuckling
response increases as the shear deformation becomes more signif-
icant. The elasticity solutions for plates of rectangular cross sec-
tions were given by Pagano [17,18] by comparing the solutions
of several specific boundary value problems in his theory to the
corresponding ones of elasticity solutions. In general, it is found
that the conventional plate theory leads to a very poor description
of laminate response at low span-to-depth ratios, but it converges
to the exact solution as this ratio increases. While the cylindrical
bending provides a convenient tool for performing a one-dimen-
sional analysis of laminated plates, a theory for anisotropic lami-
nated beams is also important. The difference between the
cylindrical bending and beam bending is analogous to the differ-
ence between the plane strain and plane stress in classical theory

of elasticity. The major difference is in the term of bending stiff-
ness. Recently, Foraboschi [19,20] developed the analytical model-
ing within the framework of one-dimensional elasticity. This
new approach found the exact solution for the laminated compos-
ite beams and laminated glass columns. Moreover, the analytical
modeling was recently developed within the framework of two-
dimensional elasticity [21–24]. The classical and first-order shear
deformation theories underestimate the amplitude of buckling
while the considered higher-order theories yield very close results.
Murthy et al. [25] developed a refined 2-node, 4 degree-of-freedom
node beam element based on a higher-order shear deformation
theory for the axial flexural shear coupled deformation in asym-
metrically-stacked composite beams. In spite of the availability
of finite element method and powerful computer programs, the
second- or higher-order analysis of a composite beam is still an
impractical task to most structural designers due to the limitation
of the number of degrees of freedom (DOF) required to achieve a
desired level of precision and efficiency. The use of elasticity theory
is practically unfeasible due to mathematical difficulties and the
complexity of laminated systems. This led to the development of
refined shear deformation theories for beams which approximate
the two dimensional solutions with reasonable accuracy.

Most recently, Carrera et al. [26-30] and Giunta et al. [31,32]
established the Carrera Unified Formulation (CUF) which has hier-
archical properties and is capable of dealing with most typical
engineering challenges, i.e., the error can be reduced by increasing
the number of the unknown variables. It overcomes the problem of
classical formulae that require different equations for tension,
bending, shear, and torsion, and it can be applied to any beam
geometries and loading conditions, reaching a high level of accu-
racy with low computational cost. It can tackle problems that in
most cases are solved by employing the plate/shell and 3D formu-
lations. The comparison of the analytical results with the experi-
mental results shows good correlation in general.

Challamel et al. [33] investigated the buckling behavior of gen-
eric higher-order shear deformable beam models in a unified
framework. Buckling solutions were presented for usual archetypal
boundary conditions, such as pinned–pinned, clamped–free,
clamped–hinge, and clamped–clamped boundary conditions. The
results were then extended to general boundary conditions based
on the generalized linear elastic connection law including the ver-
tical and rotational stiffness boundary conditions. In addition,
Emam [34] studied the postbuckling behavior of symmetrically-
laminated and simply-supported beams by solving the nonlinear
governing equations for which the critical buckling load is
obtained by solving their linear counterpart. The results showed
that the shear deformation of moderately-thick beams or beams
made up of highly anisotropic materials has a significant effect
on the postbuckling behavior of laminated composite beams.

Moreover, Ghugal and Shimpi [35] presented a review of refined
shear deformation theories for the structural analysis of shear
deformable isotropic and laminated beams and on the recent
advances in the modeling and analysis of laminated beams. Mulla-
pudi and Ayoub [36] analyzed the reinforced concrete columns
subjected to combined axial, flexure, shear, and torsional loads.
Wang et al. [37] illustrated how the shear deformation theories
provide accurate solutions when compared to the classical theory
for both the beams and plates. Waas [38] presented an asymptotic
initial postbuckling analysis of pinned–pinned and clamped lami-
nated beams, incorporating the first-order shear deformation
effects.

The imperfection sensitivity of the beams has been extensively
studied, and the maximum load carrying capacity is usually calcu-
lated as a function of normalized imperfection amplitude. In fact,
the effect of initial geometric imperfection may play a great role
in the postbuckling behavior of moderately-thick anisotropic
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