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a b s t r a c t

The objective of this study is to analytically investigate the nonlinear response and nonlinear power dis-
tribution of parametrically excited space cable-beam structures under the effects of simultaneous inter-
nal and external resonances. The general coupled thermo-elastic equations of cable-beam structures
considering geometrically nonlinearity of cables are firstly developed using the finite element method.
Linear modal analysis is then performed to decouple the nonlinear differential equations, and yields a
complete set of system quadratic/cubic coefficients in modal coordinates. By the method of multiple
scales, the first order asymptotic analysis under 1:2 internal resonance and primary resonance is accom-
plished. Based on acquired stable solutions, the analytical forms of nonlinear nodal and elemental power
flows are further proposed. The nonlinear phenomena of a planar parametrically excited cable-beam
structure, such as the bending of response curve, jump phenomena, instability regions, saddle-node bifur-
cation are verified and the corresponding power distribution is explored by means of numerical analysis.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of space structure forms were born to adapt to harsh
space environments and accomplish special space missions.
Among these structure forms, cable-beam structures are a large
class of critical structures currently being developed and planned
to achieve various missions of spacecraft. Representative struc-
tures include deployable mesh reflector antennas and large diam-
eter space radio telescopes, which have been widely applied in the
fields of satellite communications, earth observations, land remote
sensing and deep space explorations. Examples include many
renowned projects, such as ETS-VIII [1], THURAYA 1-3 [2], MBSAT
[3], ‘‘NEXRAD in Space (NIS)’’ and GEO-mobile satellites.

Cable-beam structures are characterized by long spans and high
load-carrying capacities, making full use of the compression and
bending performances of beams and the tensile ability of high
strength cables [4]. As the main component of space cable-beam
structures, cable nets are light-weight and flexible tension struc-
tures. The price of their lightness is their low stiffness leading to
large deformations. It is well known that cables change signifi-
cantly their shape in order to equilibrate transverse loads, due to
lack of shear and bending rigidity [5,6]. Hence, an important differ-
ence is noted between the initial geometry and the deformed one

and the system’s stiffness changes as the loads act on the structure,
leading to a so-called geometric nonlinearity. The principle of
superposition is not valid for such systems and separate nonlinear
analysis must be performed for each loading combination [7].
Moreover, the cables must remain in tension under any load com-
binations, as cable slackening leads to large local deformations,
sudden increase of the tension in adjacent cables. Cable nets with
large curvatures lead to an increase of the system’s stiffness for
loads. High levels of initial pretension in cables can also mitigate
the large deflections, rendering the system sufficiently stiff [8].
Due to these two properties, cable nets are considered as weakly
nonlinear systems, as opposed to single cables, which are strongly
nonlinear. Thought the nonlinearity of cable nets is weakly, it has a
significant effect on dynamic responses of the overall cable-beam
structure. Moreover, some new mechanisms will be generated
due to the structural coupling of cables and beams, such as internal
resonances between the modes of beams and cables, as well as the
combinational resonances of systems.

The increasing interests of cable-beam structures in space
applications have led to the growing demands for high surface
accuracy and large size. These demands have great effects on per-
formances of space explorations. For mesh reflector antennas, large
diameter and high precision reflectors not only are capable of
transmitting greater amount of data with higher resolution, but
also can expand their working frequency bandwidth from S-band
to Ku-band or Ka-band. However, the large-sized cable-beam
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structures easily vibrate induced by particular surroundings, such
as plasma, particle, radiative outputs from the Sun, especially high
and low temperature alternations [9]. The temperature excitations
can induce the variations of structural stiffness and physical
parameters of cable-beam structures followed by changes of their
vibration amplitudes, as opposed to linear oscillations, which are
invariable amplitudes. Moreover, the vibration amplitude with
internal resonances may suffer from unstable region and bifurca-
tion phenomena, such as, saddle-node and Hopf bifurcation. The
saddle-node bifurcation, a static bifurcation, represents the abrupt
change of the stability and number of periodic motion states. The
saddle-node bifurcation point corresponds to the jump phenomena
and phase delay. The Hopf bifurcation is a dynamic bifurcation cor-
responding to sudden change of the topology structure of phase
trajectories. The consequence of the Hopf bifurcation is known as
galloping or flutter. These devastating nonlinear phenomena are
unallowed as they can drastically deteriorate surface accuracy of
space cable-beam structures. Therefore, the analysis and suppres-
sion of nonlinear dynamic behaviors of space cable-beam struc-
tures are extremely pivotal and challengeable in further space
applications.

Many studies have focused on the nonlinear responses of single
beam or cable using single or multi-degrees of freedom (DOFs)
[10–13]. From the perspective of the overall structure, Amer
et al. investigated nonlinear behaviors of a string-beam coupled
system subjected to parametric excitation including multiple solu-
tions, and jump phenomenon in the resonant frequency response
curves and chaotic motions [14]. Ding studied the periodic oscilla-
tions in a suspension bridge system using the variation reduction
method [15], and found that the considered system had at least
period-3 oscillations. Sun et al. presented a formulation for fully
coupled oscillation analysis of long-span supported bridges [16],
where a combination of the finite element approach and pseudo-
excitation method was used. Domenico and Grimaldi investigated
continuous and discrete models of cable-stayed bridges numeri-
cally and analytically considering the nonlinear behavior of the
instability effect of the axial compression in the girder [17]. Yau
and Yang [18] used an efficient numerical modeling to analysis
the dynamic behavior of cable-stayed bridges subjected to railway
loads, while considering the nonlinearities involved in the cable
system. El Ouni et al. [19] numerically conducted the nonlinear
dynamic analysis of a cable stayed bridge in construction phase
under parametric excitations. A nonlinear inclined cable with small
sag which takes into account the quadratic and cubic nonlinear
couplings between in-plane and out-of-plane motion, is coupled
with a finite element model of a cable stayed bridge. Cao and
Zhang [20] explored the nonlinear and chaotic dynamics of a
string-beam coupled system using a nonlinear system having
two DOFs. In this paper, the method of multiple scales was applied
to analyze the nonlinear responses, moreover the phase portrait,
waveform, and Poincare map were used to study the periodic
and chaotic motions of the system. Gattulli et al. conducted the
one-to-two global–local nonlinear interactions between a beam
and a cable in a cable-stayed bridge system [21]. In their analytical
model, the global mode defines the motion of the beam with the
cable being quasi-static; in the local mode, only the cable appears
to be in motion. Wei et al. investigated the bifurcation and chaos of
a cable-beam coupled system under simultaneous internal and
external resonances considering the combined effects of the non-
linear terms due to the geometric and coupled behavior between
the modes of the beam and the cable [22,23]. However, the avail-
able nonlinear dynamic model of cable-beam structures is not suit-
able for analyzing large-scale cable-beam system including
multiple beams and cables. Moreover, to the authors’ knowledge,
the effects of thermal deformations on nonlinear dynamic behav-
iors of cable-beam structures are not investigated in the litera-

tures. Since the temperature change is one of the major factors
affecting the surface accuracy of space cable-beam structures, the
time-varying thermal distortion must be considered.

The objective of this work is to investigate the nonlinear phe-
nomena of parametrically excited space cable-beam structures
due to thermal loads. The general thermo-elastic dynamic equa-
tions of space cable-beam structures are firstly established using
the finite element method, which are characterized by quadratic
and cubic nonlinearities. The alternating thermal loads are intro-
duced in the form of stress excitations. The coupled linear elasticity
terms of obtained dynamic equations exhibit the effects of cable
pretensions, initial configuration and thermal stress. After bound-
ary conditions are applied, the linear modal analysis is then per-
formed to calculate natural frequencies and decouple nonlinear
differential equations to obtain the quadratic/cubic coefficients of
system. By modal decoupling, the motion equation for each DOF
of parametrically excited cable-beam structures is a Mathieu equa-
tion in modal coordinates.

Considering simultaneous primary resonance and 1:2 internal
resonance, the nonlinear dynamic model is solved by the method
of multiple scales perturbation. The available perturbation tech-
niques for nonlinear dynamic analysis include the Lindstedt–Poin-
care method, the method of multiple time scales, the averaging
method [24] and the harmonic balance method [25]. The Lind-
stedt–Poincare method treats some systems inconveniently, such
as damped systems. For the method of harmonic balance, one
needs either to know a great deal about the solution a priori or
to carry enough terms in the solution and check the order of the
coefficients of all neglected harmonics. The averaging method in
an ad hoc manner may lead to an incorrect answer. As a conse-
quence, the method of multiple time scales is chosen for nonlinear
dynamic analysis of parametrically excited space cable-beam
structures because of its good generality. The nonlinear phenom-
ena and power distribution of a planar cable-beam structure are
explored by means of numerical analysis.

2. Thermal-induced dynamic model

The cable-beam structure for space explorations is mainly com-
posed by a large-scale cable net and multiple supporting beams.
The nonlinearities of the overall cable-beam structure are consid-
ered to be induced by geometric nonlinearities of the cable net
due to its flexible and the characteristic of large displacement with
small stress. The thermal loads yield time-varying stress affecting
dynamical behaviors of cable-beam structures.

2.1. Cable element

Different from the cables for ground-based applications, cables
for space applications are characterized by high tension, light-
weight and zero gravity. The geometric nonlinearities of cable nets
result from structural large displacements not the sag due to grav-
ity. Therefore, space cable nets can be abstracted as three-dimen-
sional truss structures, of which each member is modeled as bar
and is only able to afford tension of elongation [26].

The undeformed and deformed configurations of the cable
member are shown in Fig. 1 with nodes 1 and 2 as its two ends.
The initial pretension of the kth cable is denoted as Nk. The coordi-
nates of nodes 1 and 2 are denoted by (xini,j, yini,j, zini,j)j=1,2, and then
nodal displacement vector after deformation can be described by

fudgk ¼ ðx1;d; y1;d; z1;d; x2;d; y2;d; z2;dÞTk ð1Þ

By the Taylor-series expansion algorithm, the elastic strain of
the kth cable, eet,k, is the function of elemental displacement vec-
tor, and can be given by
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