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a b s t r a c t

Performance-based design, or performance-based engineering (PBE), is currently well accepted as a
proper methodology for assessing risk and designing facilities which can be subject to continuous levels
of damage caused by extreme responses under various hazards of varying magnitudes. However, the dif-
ficulties in assessing probabilities associated with different hazard and performance levels, especially
when nonlinearity is considered in dynamically excited structural systems, have been a limiting factor
for incorporating PBE into design optimization. This paper advances the state-of-the-art by incorporating
PBE into the optimal design of non-linear/hysteretic stochastic dynamical systems. The approach com-
bines a statistical linearization technique with time-variant reliability analysis concepts, in order to for-
mulate a total expected life-cycle cost optimization problem. As a numerical example, reinforced
concrete buildings modeled as MDOF Bouc–Wen hysteretic systems subjected to wind excitation are
studied. Optimal transversal stiffness of the buildings columns are obtained both for the linear and the
nonlinear cases, as well as for various design life values. Optimal stiffness values determined herein con-
sider the initial costs but also expected losses over the lifetime of the structure, for several wind hazard
magnitudes and displacement response levels of the structure.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Civil engineering structures (e.g. high rise buildings, bridges,
offshore platforms) are often subject to evolutionary stochastic
excitation, such as wind, earthquake and ocean waves [1,2]. In this
regard, a concerted effort has been made to reduce the costs
related to failure due to these kinds of excitation (e.g. [3]). One
of the most recent trends is the use of Performance Based Design
(PBD) or Performance Based Engineering (PBE) to assess risks asso-
ciated with civil engineering structures [4,46]. Specifically, PBE is a
design/analysis philosophy for addressing facilities subject to sev-
eral hazards of different magnitudes for which various levels of
performance (comfort, minor damage, gross damage and collapse)
are accepted with different probabilities. The concept was origi-
nally developed for earthquake engineering [5–9], but was
promptly extended to wind engineering [10–12] and more recently
to seismic pounding [13] and hurricane hazards [14] applications.

The concept of PBE can be readily combined/associated with the
idea of design optimization for minimal life-cycle costs [15–19]. In

this regard, the costs associated with different expected displace-
ment responses of the structure are evaluated over different load
(hazard) intensities. The total expected life-cycle cost, including
initial (construction) costs and expected losses due to different
hazards, is minimized with respect to the appropriate design
variables.

The combination of PBE and design optimization, however,
is not a straightforward task, due to the significant difficulties
in assessing probabilities associated with different hazard and
structural response levels. Most PBE research papers encountered
in the literature address risk analysis, but contributions combining
PBE with design optimization are still scarce [9,43–45]. On the
other hand, several seminal papers address optimization of
stochastic dynamical systems under uncertainties [22–32], but
not under a PBE perspective. Obviously, consideration of nonlinear
structural models [1,2,9,27,30,32], in this context, is an added
difficulty.

The present paper advances the state-of-the-art by incorporat-
ing PBE and life-cycle cost minimization in the optimal design of
non-linear/hysteretic stochastic dynamical systems. A framework
is developed for optimizing the performance of structural systems
exhibiting complex nonlinear/hysteretic behavior, when subject to
stochastic excitation. In this framework, statistical linearization
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(e.g. [33,34,47]) and time-variant reliability analysis concepts are
applied, in conjunction with the PBE philosophy, for minimizing
the total expected life-cycle cost of civil engineering structures.

The remainder of the paper is organized as follows: In Section 2
the statistical linearization technique is presented/reviewed for
MDOF systems. Time-variant reliability concepts are described in
Section 3. The performance-based engineering approach is pre-
sented in Section 4. The optimization problem formulation is pre-
sented in Section 5. An application example involving an RC
building subject to wind excitation is presented in Section 6. The
paper finishes with some concluding remarks in Section 7.

2. Statistical linearization based response of nonlinear mdof
systems

The stochastic differential equation governing the response of a
d-degree of freedom structural system subject to stochastic excita-
tion takes the form

M€y þ C _y þ Ky þ gðy; _yÞ ¼ wðtÞ ð1Þ

where M, C and K are the mass, damping and stiffness matrices,
respectively, w(t) is a stochastic excitation vector, y is the relative
displacement (drift) between two consecutive stories, and gðy; _yÞ
is an arbitrary nonlinear vector function modeling various forms
of nonlinearity. In this paper, statistical linearization is used to
transform Eq. (1) into an equivalent linear system of the form

M€y þ Ceq _y þ Keqy ¼ wðtÞ ð2Þ

where Ceq and Keq are the equivalent damping and stiffness matri-
ces, whose terms are to be determined. Relying on standard statis-
tical linearization results [33] (see also [34]), the equivalent linear
system stiffness and damping elements are given by

ðKeqÞij ¼ ðKÞij þ E
@gi

@yj

" #
and ðCeqÞij ¼ ðCÞij þ E

@gi

@ _yj

� �
; ð3Þ

where E[.] is the expectation operator. In the case of linear systems
of the form of Eq. (2), the frequency response function matrix H(x)
becomes H(x) = ( �x2Meq + ixCeq + Keq)�1, whereas in the case of
stationary stochastic excitation the spectral excitation-response
(input–output) matrix relationship is given by

SyðxÞ ¼ HðxÞSwðxÞHT�ðxÞ ð4Þ

In Eq. (4), Sw(x) represents the power spectrum matrix of the
excitation; Sy(x) represents the power spectrum matrix of the
response; and HT⁄ denotes the transpose of the complex conjugate
of the frequency response function matrix. Further, the cross-
variances of the response displacement and velocity are given by

E½yiyj� ¼
Z

Syiyj
ðxÞdx E½ _yi _yj� ¼

Z
x2Syiyj

ðxÞdx ð5Þ

Clearly, Eqs. 3–5 constitute a nonlinear system of algebraic equa-
tions to be solved for the unknowns(Keq)ij, (Ceq)ij, and Syiyj

(or, equiv-
alently E½yiyj�). To this aim, an iterative scheme, commonly utilized
in statistical linearization applications (e.g. [33]) is also adopted
herein. Initial values are assumed for the unknowns (Keq)ij, (Ceq)ij.
Next, Syiyj

is evaluated using Eq. (4), and E[yiyj] is determined by
employing Eq. (5). This value is used in Eq. (3) to calculate the
equivalent stiffness and damping elements. The iterative scheme
is repeated until convergence is reached.

One of the main approximations involved in the standard
implementation of statistical linearization (also adopted herein)
relates to the fact that the system response is assumed to be
Gaussian. This is true for linear systems. Obviously, this is not
the case with Eq. (1) since the system is nonlinear. Nevertheless,
note that the output of statistical linearization is first- and

second-order statistics (system mean response values and vari-
ances). Thus, it can be argued that even in cases where the system
response probability density function (PDF) deviates considerably
from the Gaussian one, the magnitude of this discrepancy is
reduced when referring to system first- and second-order statistics.
Overall, statistical linearization has been shown in the literature
to exhibit satisfactory accuracy for a wide range of systems of
engineering interest (e.g. [33,47]). Elaborating further on the
accuracy of statistical linearization, it obviously depends not
only on the form of the nonlinear function g(.), but also on the
nonlinearity and excitation magnitudes. A comprehensive presen-
tation of statistical linearization theoretical as well as accuracy
related aspects can be found in Refs. [33,47].

3. Time-variant reliability elements

Using Eq. (5), the time-variant reliability problem for the ran-
dom system response displacement can be formulated as follows.
During a non-zero mean excitation event of specified duration tE,
the response of the oscillator should not exceed the specified limit
bi, where bi corresponds to some critical response level. The critical
response may represent minor damage, gross damage or loss-of-
equilibrium, and is further addressed later on in the article. The
determination of the above time-dependent probability, known
as survival probability, has been a persistent challenge in the field
of stochastic dynamics. In this regard, several research efforts have
focused on developing versatile MCS based techniques such as
importance sampling, subset simulation and line sampling for reli-
ability assessment applications; see [48] and references therein.
However, there are cases where the computational cost of these
techniques can be prohibitive, especially when large scale complex
systems are considered. Thus, there is a need for developing effi-
cient approximate numerical and/or analytical methodologies for
addressing the aforementioned challenge (e.g. [49]). One of the
first frameworks developed, and adopted herein, is based on
knowledge of system response statistics, such as mean out-cross-
ing rates, and usually assumes Poisson distribution based approx-
imations (e.g. [50]).

For a linear system excited by a non-zero mean lw Gaussian
process, the response is Gaussian and the up-crossing rate can be
evaluated as:

mþy ðbÞ ¼
r _y

ry

1
2p

exp �
ðb� lyÞ

2

2r2
y

 !
ð6Þ

where ry and r _y are given by Eq. (5), by means of some scalar limit
state measure (e.g., relative displacement between floors, displace-
ment of top floor, etc.); and ly is obtained by taking the expectation
of the solution of Eq. (1).

Note that the solution above assumes stationarity of system
response. In this regard, many environmental processes acting as
structural loading can be described by the arrival of an unknown
number of events (winds, storms, sea waves, earthquakes), some
of which can be assumed stationary within the specific event dura-
tion. For intermittent actions such as wind loading, the crossing
rate in Eq. (6) could be further multiplied by the mean rate of
occurrence of wind storms. Alternatively, Eq. (6) is computed by
adding a turbulent wind model to the annual mean wind speed,
as detailed in Section 6.2. Note that for non-stationary excitation
cases, such as earthquakes, the current framework can still be
applied subject to a rather straightforward generalization. In this
regard, the crossing rate in Eq. (6) becomes time-dependent
whereas the system response variances become non-stationary.
To determine the non-stationary system response variances the
standard implementation of statistical linearization delineated in
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