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a b s t r a c t

This paper develops a bi-directional evolutionary structural optimization (BESO) method for topological
design of compliant mechanisms. The design problem is reformulated as maximizing the flexibility of the
compliant mechanism subject to the mean compliance and volume constraints. Based on the finite ele-
ment analysis, a new BESO algorithm is established for solving such an optimization problem by gradu-
ally updating design variables until a convergent solution is obtained. Several 2D and 3D examples are
presented to demonstrate the effectiveness of the proposed BESO method. A series of optimized mecha-
nism designs with or without hinge regions are obtained. Numerical results also indicate that the flexi-
bility and hinge-related property of the optimized compliant mechanisms can be controlled by the
desired structural stiffness.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Compliant mechanisms are usually monolithic structures that
transfer an input force or displacement to another point through
elastic deformation. Different from the rigid-link mechanisms,
the motions of compliant mechanisms are derived mainly from
the relative flexibility of their components. Such monolithic
mechanical devices have numerous virtues such as saving space,
reducing fatigue and high stress concentration and without any
assembly cost [1]. Therefore, the application of compliant mecha-
nisms has become increasingly prevalent in medical instruments
and micro-electro-mechanical systems (MEMS). In spite of various
advantages in their application, it is challenging to design a com-
pliant mechanism with desired functions. Generally, there are
two main approaches to the design of compliant mechanisms,
namely the kinematics-based approach [1,2] and the topology
optimization-based approach [3–6].

Topology optimization enables designers to find a suitable
structural layout for the required performance. It has attracted
considerable attention over the past decades and many different
techniques such as the homogenization method [7], Solid Isotropic
Material with Penalization (SIMP) method [8–10], level-set
method [11,12] and evolutionary structural optimization (ESO)
method [13,14] and others [15–17] have been developed. The
ESO method is based on a simple concept that inefficient material

is gradually removed from the design domain so that the resulting
topology evolves toward an optimum. The later version of the ESO
method, namely bi-directional ESO (BESO), allows not only to
remove elements from the least efficient regions, but also to add
elements in the most efficient regions simultaneously [18–20]. It
has been demonstrated that the current BESO method is capable
of generating reliable and practical topologies for optimization
problems with various constraints such as stiffness [21], frequency
[22] or energy absorption [23–25].

The design of compliant mechanisms using topology optimiza-
tion techniques has been exhaustively explored in previous dec-
ades [3–6]. Generally, an efficient compliant mechanism as
shown in Fig. 1(a) should be flexible enough to produce the
expected kinematic motion (flexibility) but should also be stiff
enough to resist external forces (stiffness). The flexibility and stiff-
ness characters of a compliant mechanism can be quantified using
relationships between the applied forces, the resulting displace-
ments at the input port of the mechanism, and the resulting dis-
placements and reaction forces at the output port of the
mechanism. The topology optimization problem has been formu-
lated in a number of alternative ways through utilization of
assorted objective and constraint functions due to the inherent
multi-objective performance demand. The objective function can
be defined by the output displacement, geometric advantage (GA,
the ratio of input and output displacements) or mechanical advan-
tage (MA, the ratio of input and output forces) [5,6,26–28] accord-
ing to the flexibility function of the compliant mechanism.
Alternatively, the mutual potential energy (MPE), the strain energy
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(SE) or other equivalent measurements can be used as a single or
multiple objective functions to qualify the combination of struc-
tural flexibility and stiffness [4,29–33].

Designing compliant mechanisms using topology optimization
methods typically results in de facto hinge regions in the design
models due to the problem formulation. The existence of de facto
hinge regions makes compliant mechanisms function as rigid-link
mechanisms so as to maximize their capability of transferring
kinematic motion. Due to the difficulties in manufacturing reliable
hinges especially for micro-scale mechanical systems, designing
monolithic and hinge-free compliant mechanisms has attracted
extensively attention and undergone considerable development
in recent years. Rahmatalla and Swan [30] conducted an review
on a number of different techniques for eliminating de facto hinges
in the design of compliant mechanisms. The topology optimization
formulation by imbedding wavelet base functions was developed
to preclude the formation of de facto hinge regions [34,35]. Other
approaches attempted to eliminate de facto hinge regions include
imposing a minimum length constraint [36] or filter schemes
[37]. Such morphology-based approaches could greatly reduce
the occurrence of one-node connected hinges, but were not
entirely effective due to the nature of the optimization problem.
Reformulating the problem as a multi-criteria optimization might

be an effective way for entirely circumventing de facto hinge
regions which generally lie along the force path from the mecha-
nism input port to the output port. For example, simultaneously
maximizing the flexibility and minimizing the stiffness of the
input-restrained structure can achieve hinge-free compliant mech-
anisms [30,38], and the resulting compliant mechanisms are also
stiff and can resist the additional load exerted by the work-piece
once it has been secured. Recently, Zhu et al. [39] incorporated this
approach to optimize hinge-free compliant mechanisms with mul-
tiple outputs. Nevertheless, it should be noted that the stiffness of a
compliant mechanism is only equivalent to that of the input-
restrained structure when the stiffness of the work-piece tends
to infinity.

With a given stiffness of the work-piece, the formation of de
facto hinge regions must be correlated with the structural stiffness
of compliant mechanisms. This paper proposes a new BESO
method for optimally designing the flexibility of compliant mech-
anisms by altering the desired structural stiffness which includes
the influence of external loads exerted by the work-piece. The
paper is organized as follows: Section 2 reformulates the optimiza-
tion problem of compliant mechanisms and derives the sensitivi-
ties of objective and constraint functions. Section 3 describes the
BESO algorithm and its numerical implementation. Section 4 pre-
sents numerical examples and discusses the formulation of de facto
hinge regions. Concluding remarks are made in Section 5.

2. Problem formulation for the design of compliant mechanism

Consider the design domain of a compliant mechanism where
Fin is the applied force at the input port and uout is the expected
output displacement at the output port as shown in Fig. 1a. A
spring with a constant stiffness, ks, is introduced to simulate the
interaction between the work-piece and the compliant mecha-
nism. uin is the resulting displacement at the input port and Fout =
ksuout is the output force.

When the mechanism behaves in a linear elastic fashion, the
displacement field of the mechanism can be calculated according
to the displacements caused by the input unit dummy load case
(Fig. 1b) and the output unit dummy load case (Fig. 1c). u1,in and
u1,out denote the displacements at the input port and the output
port of the input unit dummy load case. Similarly, u2,in and u2,out

denote the displacements at the input port and the output port
of the output unit dummy load case. Thus, the displacements uin

and uout at the input and output ports of the mechanism can be
found through the superposition of the input unit dummy load
case and the output unit dummy load case as

uin ¼ Finu1;in � Foutu2;in ð1Þ

uout ¼ Finu1;out � Foutu2;out ð2Þ

With the relationship of Fout = ksuout, uin and uout can be explicitly
expressed by

uin ¼ Fin u1;in �
ksu2;inu1;out

1þ ksu2;out

� �
ð3Þ

uout ¼
Finu1;out

1þ ksu2;out
ð4Þ

Generally, compliant mechanisms should efficiently convert
applied force or energy at the input port into desired force or
energy at the output port. Within a topology optimization frame-
work, a variety of objective functions are defined to find a compli-
ant mechanism with the desired performance [3–6,21–28].
Basically, the performance of compliant mechanisms can be
measured by the characteristics of their flexibility and structural

Fig. 1. (a) Compliant mechanism; (b) input unit dummy load case; (c) output unit
dummy load case.
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