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a b s t r a c t

Moving load problems typically consider a structural material with properties that do not vary while the
load traverses the structure. However, there is evidence that for some materials the structure will
respond with a higher modulus of elasticity than that corresponding to a static test for sufficiently high
strain rates. This paper investigates the variation in strain rate of a simply supported beam made of a vis-
coelastic material traversed by a moving load and its effect on the modulus of elasticity. The influence of
speed and magnitude of the moving load on the displacement and strain responses of the beam is
discussed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Large dynamic loads that are applied very rapidly, such as
impact loading, have been shown to largely influence the way a
structural material behaves [1–6]. Modulus of elasticity, and ten-
sile and compressive strengths are some of the material properties
affected by the dynamic nature of the applied load. This phenom-
ena is commonly found in construction materials such as asphalt
[7] or concrete [1,5], which loaded at constant strain rate, exhibit
significant increases in the modulus of elasticity as strain rate is
raised. In the case of reinforced concrete tests, the increase in mod-
ulus of elasticity with strain rate strongly depends on the method
of testing [3,8]. No significant increase is identified for steel [8–10].
In addition to impact studies, differences between the ‘static’
modulus of elasticity, Es, (i.e., derived from static loading tests)
and the ‘dynamic’ modulus, Ed, are also noticeable when the latter
is derived from measured frequencies of vibration [11]. Different
analytical techniques (eigenvalue analysis, Rayleigh energy
method) are employed to derive a relationship between frequency
and Ed [12]. Finally, simple equations such as ‘‘Es = 0.83Ed’’ and
‘‘Es = 1.25Ed � 19 (both Es and Ed in GPa)’’ are proposed for concrete
by Lydon and Balendran [13] and BSI [14] respectively [15].

It is then acknowledged that high strains can lead to a ‘dynamic’
modulus significantly different from the ‘static’ modulus. Two
questions arise here: (i) ‘‘what’s the static strain rate threshold

beyond which the material will start to develop viscoelastic
properties?’’ and (ii) ‘‘how Ed relates to Es at high strain rates?’’.
In relation to the first question, Bischoff and Perry [2] consider that
strain rates can vary from 10�6 s�1, for the case of a static load
application, to 103 s�1 for hard impact or an explosion. For loads
moving across a structure, the strain rate will depend on the
mechanical properties of the structure, the magnitude and speed
of the load, but it can be assumed to be somewhere between the
static (>10�6 s�1) and that associated to earthquake loading
(<10�2 s�1). The response of a beam to a moving load has been
investigated for numerous scenarios in the literature: uniform
and tapered sections [16], straight and curved alignments [17],
simple supported and continuous spans [18], un-cracked and
cracked sections [19,20], Euler–Bernoulli and Timoshenko type
[21], etc. A thorough review can be found in [22–26]. However,
these moving load investigations use material properties that do
not vary during the load crossing; in particular, the influence of
strain rate on the behavior of the material is neglected. While
the latter will hold true for some materials or applications of small
loads at low speeds, recent research confirms the impact of high
strain rate on the properties of concrete in bridges [1,2,27]. Further
evidence can be found in the Bridge Weigh-In-Motion literature,
where the static moment in a bridge is related to the measured
strain (prior removal of dynamics and noise via a low-pass filter)
by scaling the influence line using a calibration factor. The
calibration factor is representative of the section modulus and
modulus of elasticity at the measurement point and it is obtained
by driving a vehicle(s) of known configuration with different
speeds and loading conditions over the bridge. However, some
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Bridge Weigh-In-Motion sites have revealed a tendency of the fac-
tor to increase with higher loads and speeds [28]. These sites sug-
gest that the mechanical properties of the bridge are affected by
high strain rates and are one of the drivers for the theoretical
investigations in this paper. By the first time in the literature, con-
sideration is given to how the strain rate and modulus of elasticity
of a beam made of a viscoelastic material change over time due to a
moving load. Given that Ed is higher than Es, as strain rate rises, the
structure will behave in a stiffer way and react to the applied load
with a smaller response than initially expected. Simulations are
carried out for simply supported beams with different mechanical
properties. Load speeds and load magnitudes are also varied in
order to assess the impact of introducing a viscoelastic material
in the moving load problem.

2. Model to simulate the response of a beam to a moving load

The moving load is represented by a constant force and the
underlying structure is modelled as a simply supported discretized
finite element Euler–Bernoulli beam of constant rectangular cross-
section as sketched in Fig. 1.

Although this simplistic model assumes that the mass of the
moving load is much smaller than that of the bridge (i.e., the inter-
action between both is neglected), it is still widely used in research
and in practice. For instance, it has resembled patterns of dynamic
amplification versus speed measured in bridges [20]. Therefore, it
is deemed to be sufficient for the aim of evaluating the strain rate
that may develop in the beam and its potential effect on the overall
response. Details on its implementation [29] are provided here.

Two degrees of freedom per beam node are considered in this
model (vertical displacement uj and rotation hj for each elementary
beam j as shown in Fig. 2). Therefore, the elementary stiffness
matrix [Kj] relating forces and moments to these degrees of free-
dom at each individual discretized beam j is given by:
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where Ej, Lj, and Ij are the modulus of elasticity, length, and second
moment of area of each elementary beam. These elementary stiff-
ness matrixes are assembled into the global stiffness matrix [K]
(Fig. 1).

Initially, the modulus of elasticity Ej is adopted to be the ‘static’
modulus Es. However, in the case of using a strain rate dependant
material, the modulus of elasticity Ej (and hence, the stiffness EjIj)

may adopt a value of ‘dynamic’ modulus Ed that can vary at each
point in time. These changes in stiffness are updated using an
equivalent moment of inertia as follows. The cross-section of each
elementary beam is discretised into strips as in Fig. 2. In this figure,
d is the depth of each strip, which has been adopted to be 0.003 m
for the simulations in this paper (i.e., 200 strips for a total element
depth of 0.60 m).

The displacements of the beam at each node are calculated
using the equation of motion in Fig. 1 and the strain ej,k is esti-
mated using Eq. (2) for each kth strip of beam element j at each
time step:
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where yk is the distance from the center of the kth strip to the neu-
tral axis of the entire cross-section and xe is the distance where
strain is obtained at the beam element. The value xe = Lj/2, where
Lj is the length of the beam element, is used in the simulations to
calculate an average strain for each element. Strains from Eq. (2)
are then used to derive the strain rate _ej;k for each element j and
strip k (Eq. (3)):

_ej;kðtÞ ¼
ej;kðtÞ � ej;kðt � DtÞ

Dt

� �
ð3Þ

where Dt is the time increment. This strain rate is used to calculate
the ‘dynamic’ modulus Ed corresponding to each strip k using Eq. (4)
which relates Ed to Es and _e:

EdðtÞ ¼ Es
_ej;kðtÞ

_e0

� �c
for _ek > _e0

Ed ¼ Es for _ek 6 _e0
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Here _e0 is ‘static’ strain rate threshold (or value in s�1 above which
the modulus becomes strain rate dependant) and c is an empirical
constant. In Eq. (4), Es is the ‘static’ modulus of elasticity (N/m2).
This equation is a typical constitutive model for viscoelastic materi-
als, which has been adopted by the Comité Euro-International du
Béton (CEB) Model Code. Values of c of 0.026 and _e0 of
3 � 10�6 s�1 and 30 � 10�6 s�1 in tension and compression respec-
tively are recommended for concrete [30], although _e0 can vary
between 1 � 10�6 and 60 � 10�6 s�1 in the literature [1,6,10]. For
asphalt, it has been found that the modulus of elasticity is most sen-
sitive to dynamic loads for _e0 P 1:7� 10�5 s�1 [31]. For steel, exper-
imental investigations have shown that the modulus of elasticity
remains unchanged at high strain rates [10,32] but the strain rate
has an impact on the steel’s yield strength, ultimate tensile strength
and strain. In the case of concrete, Yon et al. [27] use c values of
0.065 and higher. They assume a ‘static’ strain rate threshold _e0 of
2.5 � 10�3 s�1 based on experimental results, and for a maximum
strain rate of 0.24 s�1, they find an increase in the compressive
and tensile moduli of concrete of 41% and 60%, respectively. Most
of the literature on calibrating c values for different materials
uses experimental data conducted on a cubic specimen under
impact loading to create high levels of strain rate at a single point.
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Fig. 1. Simulation model.
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Fig. 2. Elementary beam element: (a) elevation and (b) cross-section.
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