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a b s t r a c t

Limit elastoplastic structural analysis is addressed herein in the context of mathematical programming
aiming at determining the ultimate load capacity of frame structures at incipient collapse. Multi-segmen-
tal hardening/softening behavior of critical sections is incorporated in a direct and efficient manner in the
yield condition. Axial–shear force–bending moment interaction is addressed referring to a nonlinear 3D
yield surface, appropriately linearized to form a convex polyhedron. Equilibrium and compatibility
requirements together with strength and complementarity constraints are used to formulate an
optimization problem aiming at maximizing the loading factor. For every stress point and optimization
iteration, a cone identification approach is proposed enabling the formulation of yield and complemen-
tarity conditions only for the specific targeted or activated yield hyperplane. The entire formulation is not
affected by the linearization of either the yield surface or the constitutive relations and succeeds in reduc-
ing the size of yield and complementarity conditions to a minimum. Numerical results are presented that
verify the validity and efficiency of the proposed method underlining the role of shear force interaction in
specific cases.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The direct determination of the ultimate limit state of a struc-
ture at incipient collapse subject to a permanent and a monotoni-
cally varying loading is a problem of primal interest in elastoplastic
analysis of structures. In the past decades, this has been formulated
within the context of mathematical programming offering a unify-
ing approach for the limit analysis problems of structural plasticity.

This formulation considering piecewise linearization (PWL) of
the yield criteria and constitutive relations has been introduced by
Maier et al. [1–5], addressing both perfectly plastic and hardening
structural behavior on the basis of holonomic or nonholonomic con-
siderations. Piecewise linearization of yield criteria and constitutive
laws allow for treating rigid-perfectly plastic limit analysis with
unbounded ductility as a linear programming (LP) problem using
the upper and lower bound theorems [6]. Adding in deformation
constraints under holonomic assumption has generated a variety
of alternative mathematical programming procedures, such as iter-
ative Linear Programming, Quadratic Programming, Restricted Basis
Linear Programming, Parametric Linear Complementarity and Para-
metric Quadratic Programming procedures for elastoplastic analysis

of structures [6–9]. More recently, second-order cone programming
(SOCP) problems have been proposed aiming at minimizing a linear
function subjected to linear equality conditions and quadratic/conic
inequality constraints. These SOCP problems were further general-
ized in the framework of semidefinite programming (SDP) [10,11].

Incorporation of deformation constraints and/or softening
behavior under holonomic assumption for PWL yield and constitu-
tive relations relies on complementarity conditions that change
drastically the mathematical inner structure of the optimization
problem converting it into a nonconvex one. This is known as
Mathematical Programming with Equilibrium Constraints (MPEC)
problem and various methods have been developed for its appro-
priate treatment [12–15]. Limit analysis of strain softening frames
has been also thoroughly examined for holonomic [16–18] and
non-holonomic behavior [19–21] under the effect of combined
stresses (axial force–bending moment).

According to the standard formulation that addresses the holo-
nomic elastoplastic problem, strength reserves are calculated for
every cross section for all possible planes of the PWL yield surface.
This generates for every cross section as many yield constraints as
the number of yield planes. Moreover, under this consideration for
all alternative planes of the PWL yield surface, incorporation of
multi-linear hardening/softening in the yield condition engages
all different segments of the constitutive relation. This increases
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the computational cost significantly, rendering real scale problems
prohibitive. In addition, complementarity condition is perplexed
considerably since the number of generated plastic multipliers
for every cross section meets the number of all yield planes.

The aim of this work is to examine the shear force effect on the
ultimate load carrying capacity, addressing a more general interac-
tion within the stress resultants for holonomic behavior in frame
structures. This is accomplished by reducing the complexity of
the standard formulation and uncoupling the size of the problem
from the multiplicity of linearization in 3D interaction surfaces.
Elastoplastic analysis is dealt herein as an optimization problem
with equilibrium, compatibility, yield and complementarity con-
straints on the basis of holonomic assumption. The adopted yield
criterion accounts for the axial–shear force–bending moment
interaction and is applied for isotropic piecewise linear harden-
ing/softening behavior. The proposed formulation extends the con-
cept of the identification of the critical yield line introduced for 2D
interaction [22] into the yield hyperplane (cone identification) that
corresponds to each cross section at every loading instance. Thus,
the yield condition is formed only for one yield plane for each cross
section and not for all existing ones. Moreover, piecewise linear
hardening/softening behavior is incorporated with the number of
linear segments not affecting the size of the problem.

The organization of the paper is as follows. First, the governing
relations of holonomic elastoplastic problem are presented.
Equilibrium, yield, kinematical and constitutive relations are
stated and the concepts of cone and hardening/softening branch
identification are elaborated. Then, the formulation of the
elastoplastic analysis as a MPEC problem and its conversion into
a nonlinear programming (NLP) problem is presented, incorporat-
ing the axial–shear force–bending moment interaction. Ultimately,
numerical examples for steel frames are presented that illustrate
the applicability of the proposed method and the role of shear force
on the load carrying capacity of the structure.

Matrix notation is adopted throughout. Matrices are repre-
sented by capital bold-face letters, while vectors by lowercase bold
characters.

2. Problem formulation

The entire formulation is based on the following assumptions.
Plane frames consist of n straight prismatic elements, with nf nodal
degrees of freedom subjected only to nodal loading for reasons of
simplicity. Frame displacements are assumed small enough so that
the equilibrium equations refer to the initial undeformed configu-
ration and plastic hinges are considered formed only at critical sec-
tions. Euler–Bernoulli or Timoshenko beam theory accounting for
shear deformation effects is considered offering accurate stresses
for regular and deep sections respectively. In both cases compara-
tively large shear forces may be induced that should be taken into
account in the strength interaction. Apparent softening behavior
(caused by local buckling, lateral–torsional buckling or by the
semi-rigid nature of some steel connection types) is incorporated
[17]. Yield functions and constitutive relations describing the
cross-sectional behavior are beforehand appropriately linearized.
Furthermore, a holonomic, i.e. path-independent, structural behav-
ior is adopted. Although this is a simplified assumption, especially
for the case of softening behavior, it can be considered reasonable
for monotonically increasing loading [4,17,18]. For non-holonomic
behavior a stepwise holonomic approach can be applied [21].
Moreover, isotropic hardening is adopted, which under monotonic
loading and holonomic assumption yields satisfactory results [17].

For steel structures a 2D frame analysis is dominant. Ductile 3D
moment resisting frames (MRFs) are rather unusual for steel build-
ings. In practice, ductile 2D MRFs in one direction are combined

with either CBFs (concentrically braced frames) or EBFs (eccentri-
cally braced frames) in the other direction [23]. However, espe-
cially for concrete structures a more realistic influence of shear
interaction can be considered in the context of 3D frames under
the effect of multi-stress component interaction (axial–shear
force-biaxial moment interaction).

2.1. Equilibrium

From the six stress resultants developed at the ends of each
beam element in a plane frame structure three are considered as
independent, namely the axial force ðsi

1Þ, bending moment at the
start node j ðsi

2Þ and bending moment at the end node k ðsi
3Þ, as

shown in Fig. 1 and the remaining three are determined from equi-
librium relations. The structural equilibrium relationship for the
whole structure is then established as:

B � s ¼ a � f þ f d ð1Þ

where B is the (nf � 3n) structural equilibrium matrix, formed by
assembling the corresponding element equilibrium matrices, s is a
(3n � 1) vector for all primary stress resultants, a is a scalar load
factor, f is the (nf � 1) basic monotonically varying nodal forces
and fd is the (nf � 1) fixed nodal load vector.

2.2. Piecewise linear yield condition

A yield criterion expressed in normalized stress space n � v �m
(i.e. normalized axial force with respect to axial yield limit,
normalized shear force with respect to shear yield limit and
normalized bending moment with respect to bending moment
yield limit) delimits the elastic region and designates the stress
evolution in the plastic region for perfectly plastic or hardening/
softening behavior. The nonlinear yield surface is herein ‘‘a priori’’
linearized to express the yield conditions in the form of linear con-
straints. The standard formulation involves all the hyperplanes
that discretize the yield surface. This increases considerably the
number of yield constraints per critical section, complicating also
incorporation of multi-linear hardening/softening behavior. How-
ever, the only information needed is the targeted or activated
hyperplane for every stress point per critical section, generated
at every optimization step. This is accomplished through the pro-
posed identification process (Section 2.2.1) that detects the specific
cone in which every stress point resides. Each identified cone is
associated with only one yield hyperplane and thus a single yield
constraint for each critical section is implemented. This consider-
ation reduces the number of yield constraints retaining only those

Fig. 1. Frame element i with equilibrated stress resultants-end actions.
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