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a b s t r a c t

A distortional theory is developed for the analysis of doubly symmetric and mono-symmetric wide flange
beams under general loading. The governing differential equations of equilibrium and associated bound-
ary conditions are derived based on the principle of potential energy. The theory captures shear deforma-
tion effects in the web and local and global warping effects. In contrast to classical beam theories, the
present study captures web distortion by accounting for its flexibility within the plane of the cross-
section while considering the flanges as Euler–Bernoulli beams. The formulation yields two systems of
coupled differential equations of equilibrium in seven displacements fields. The first system governs
the longitudinal transverse response and involves three displacement fields, and the second system
governs the lateral torsional response and involves four displacement fields. Closed form solutions are
then developed for both coupled systems under general loading. Numerical solutions for practical prob-
lems are then provided to illustrate the applicability of the formulation. Comparisons to results based on
3D shell finite element solutions show the validity of the results. The theory preserves the relative sim-
plicity of one dimensional beam theories while effectively capturing the three-dimensional distortional
phenomena normally captured within computationally expensive 3D FEA.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and literature review

Conventionally, hot rolled and welded wide flange steel beams
are analyzed using the Vlasov theory (Vlasov [1]) which neglects
distortional effects within the cross-section. Given that such
cross-sections are relatively thick compared to cold-formed steel
sections, it is often accepted that the Vlasov theory should reason-
ably predict their response. This is generally the case for a large
number of applications. Nevertheless, some exceptions to this
general rule are known to exist. This includes cross-sections with
slender webs and thick flanges, short-span members, and/or when
the applied loads are localized such that they deform a localized
portion of the cross-section. In such cases, the web can undergo
significant distortion and the application of the Vlasov theory or
a variation thereof would lead to unreliable response predictions.
The designer would typically need to resort to shell finite element
analysis for an accurate response prediction. Another alternative is
also available through various distortional beam theories which
have developed. A common theme among these theories has been
to attempt to uncouple the distortion deformation from other
conventional deformation modes, resulting in simple uncoupled
equilibrium equations. The associated orthogonalization process

is typically rather involved. Within this context, the present paper
aims at developing a new distortional theory for wide flange sec-
tions. Rather than attempting to uncouple the resulting differential
equations of equilibrium, the study develops a fully coupled sys-
tem of governing equations and then provides a general closed
form solution for the resulting system.

Classical theories such as the Euler–Bernoulli beam, the Timo-
shenko Beam (Timoshenko [2], the thin walled beams Vlasov [1]
and Gjelsvik [3] are based on the common assumption of neglect-
ing cross-sectional distortional effects. More modern beam
theories for the static analysis of beams which accounting for dis-
tortion include the work of Schardt [4] who developed a General-
ized Beam Theory (GBT), mostly for very thin walled members
(e.g., cold form cross sections), in which he categorized the behav-
ior of the beam into: (a) the four classical modes of deformation
analogous of the Vlasov beam (Vlasov [1]), i.e., axial, biaxial bend-
ing and twist), and (b) distortion of the cross section in its own
plane. His theory introduces distortional modes and associated
warping functions that are orthogonal to the other four classical
kinematic modes of deformation and thus consists of five uncou-
pled differential equations in four classical displacement fields in
addition to a distortional field. Davies and Leach [5] applied the
GBT theory to cold formed sections. Using closed form solutions
and the finite difference method, they solved the fourth order
differential equation of distortion. Jönsson [6] postulated that
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distortion has commonalities with torsion and thus leads to anal-
ogous internal forces. He extended the concept of sectorial coordi-
nates, previously introduced by Vlasov, to characterize distortional
deformation. He developed a one-dimensional finite element to
determine the torsional and distortional warping functions and
corresponding shear distribution within the cross-section. In two
subsequent papers, Jönsson [7,8], combined the outcome of his
previous study with the principle of stationary potential energy
to formulate the distortional warping functions and corresponding
shear stresses for open and closed sections. The resulting torsional
and distortional equilibrium equations are observed to be gener-
ally remain coupled. In another treatment, Rendek and Baláž [9]
adopted vector analysis to simplify the orthogonalization process
between displacement modes normal to the cross-section and
determine the associated modal loads and sectional properties.
They approximated the transverse displacements by Hermitian
cubic functions of the longitudinal coordinate and quantified the
transverse bending moments and distortional sectional properties.
Based on a modified version of Prokic theory, Saadé and Warzée
[10] developed a finite element which accounts for cross-sectional
distortion. Later on, Gonçalves and Ritto-Corrêa [11] devised a new
approach to determine the deformation modes in which they sub-
divided the space of possible solutions into four sub-spaces based
on four distinct kinematic hypotheses. Under each hypothesis, they
identified the warping and in-plane modes. An orthogonalization
process is then performed on the associated modes to determine
the relevant cross-sectional constants. In their study, local defor-
mations and shear deformations are also captured by introducing
intermediate nodes. Jönsson and Andreassen [12] developed a
GBT solution in which they related the displacements within the
plane of the cross section to the nodal displacements through
Hermitian polynomials, thus capturing distortional effects. They
orthogonalized the various modes by enforcing kinematic con-
straints, ultimately leading to two differential equations per seg-
ment which characterize distortion within the segment. Using
polynomial interpolations of the longitudinal coordinate for con-
ventional modes and exponential interpolations for distortional
modes, they developed a finite element that captures distortion.
In a more recent study, Andreassen and Jönsson [13] generalized
their previous work by incorporating the effect of distributed loads.

A common theme among the above studies is the various elab-
orate techniques devised by authors to uncouple the resulting field
equations governing distortion from the remaining classical modes
of deformation, culminating in simpler field equations. The present
theory deviates from the previous convention by avoiding the com-
plications involved in the uncoupling process of the governing field
equations, thus yielding a highly coupled system of equations, but
then providing closed form solutions for the resulting systems of
equations under general loads.

Distortional effects also have received considerable attention in
buckling investigations of thin-walled beams. This includes the
work of Rajasekaran and Murray [14] who developed a buckling
finite element for wide flange beams based on overlaying the
kinematics of the Vlasov thin walled beam theory on those of the
Kirchhoff plate bending theory to capture the distortional behavior
of web and flanges. Johnson and Will [15] developed a shell buck-
ling finite element with 22 DOFs and applied it to capture the dis-
tortional buckling behavior and predicting the buckling capacity
of wide flange beams and columns. In a subsequent study, using
the finite strip method, Hancock [16] has shown that, in beams with
slender webs and stocky flanges, the web is susceptible to distor-
tion while the flanges remain undistorted. Hancock and Trahair
[17] developed an approximate distortional buckling solution for
simply supported wide flange beams under uniform moments
and axial forces. In their solution, they assumed that the web
deforms as a cubic function along the height while both flanges

undergo distinct angles of twist. Bradford and Trahair [18] devel-
oped a finite element for I-shaped members under unequal end
moments and compressive axial forces. Their element is based on
Hermitian shape functions to interpolate the displacements along
the span. Bradford and Trahair [19] extended their work to other
thin-walled sections such as lipped channels by retaining the flex-
ible web assumption. Using a plate bending formulation, Roberts
and Jhita [20] formulated the buckling characteristic equation of
wide flange sections. In a series of papers, Bradford extended his
previous work to develop distortional lateral buckling solutions
for mono-symmetric cross-sections [21], inelastic buckling of
hot-rolled I-beams [22], mono-symmetric I-beams with flanges
restrained by continuous lateral elastic restrains [23], beam col-
umns [24], cantilevers [25], investigating the effects of end condi-
tions, rotational and translational restraints for I-beams [26], and
beams laterally restrained at one flange [27]. A common feature
in all Bradford’s work is the approximation of web lateral displace-
ments through a cubic function. Based on the Rayleigh Ritz energy
method, Wang and Chin [28] provided a comparison between
distortional and non-distortional buckling for mono-symmetric
simply supported beam-columns. Hughes and Ma [29] developed
a distortional buckling solution for simply supported mono-
symmetric I-beams under point loads and extended their work
[30] to beams under distributed transverse loads and unequal end
moments. In their study, they assumed that the web distorts as a
fifth order polynomial function. Dekker and Kemp [31] developed
a distortional buckling solution in which they idealized the flanges
of an I-Beam as translational and rotational springs, while the flex-
ible web remains as an elastic plate. In a study on simply supported
I-beams, Pi and Trahair [32] developed a technique to quantify the
torsional and warping rigidities which incorporates distortional
effects. Their solution has incorporated pre-buckling and end-
warping restrains effects. Ng and Ronagh [33] developed a Fourier
series solution to obtain the distortional buckling capacity of
doubly-symmetric I-Beams, which models the effect of elastic
restraints and loading offset from the shear center. Based on shell
FEA, Samanta and Kumar [34] investigated the distortional buckling
of simply supported mono-symmetric I beams. Vrcelj and Bradford
[35] investigated the effect of lateral and rotational restraints on the
distortional buckling of I-beams with a tension flange seated on a
support. Ádány and Schafer [36] devised a mode decomposition
technique within the constrained finite strip method to extract dis-
tortional buckling moments. Ádány and Schafer [36], Samanta and
Kumar [37] extended their previous work to cantilevers of mono-
symmetric I cross-sections and investigated the effect of load posi-
tion and bracing height on the distortional buckling capacity. Using
the finite strip method, Zirakian [38] studied the distortional
buckling of doubly symmetric I-beams. He showed that AISC [39]
recommendations for lateral torsional buckling provisions of beams
with slender webs, which neglects the Saint-Venant torsional stiff-
ness, provide overly conservative means of incorporating the effect
of distortion. By assuming a quadratic distribution of the web lat-
eral displacement, Chen and Ye [40] developed the potential energy
expression for the distortional buckling of I-beams and applied the
Ritz method to determine the buckling solution for simply
supported beams with a single restrained flange. Using the effective
section properties developed by Pi and Trahair [32], Kalkan and
Buyukkaragoz [41] determined distortional critical moments and
compared their results to those in AISC [39], EC3 [42], and AS
4100 [43]. Their study involved distortional buckling moments in
the elastic and inelastic ranges.

A comparative summary for the above studies is provided in
Table 1.

The majority of the above buckling studies assume that the lat-
eral displacement of the web to have a cubic distribution along the
height, while the flanges remain undistorted and having distinct
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