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a b s t r a c t

Cross-tie solution is becoming more popular for mitigating unfavorable cable vibrations on cable-stayed
bridges. Connecting a vulnerable cable with its neighbours using cross-ties to form a cable network
would not only enhance its in-plane stiffness, but also affect its damping property. While the majority
of existing studies focused on the enhancement of the in-plane stiffness, of which the mechanisms are
better understood now, the research on the damping effect remain scarce. However, an effective cross-
tie design should consider both factors. An analytical model of a two-cable network consisting of two
horizontally laid main cables interconnected by a transverse orthogonal rigid cross-tie will be proposed
in the current paper to study the damping property of the system. The inherent structural damping of the
two main cables will be considered in the formulation, and an equivalent modal damping of the cable
network is proposed. The developed analytical model and approach will be applied to a number of
two-cable networks with various configurations, and validated by independent finite element simula-
tions. Based on the impact of cross-tie design on the in-plane stiffness and damping of the network, a
range of optimum cross-tie position will be defined.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, rapid development in material and
construction technology as well as analysis and design techniques
constantly sets new span length record for cable-stayed bridges.
Consequently, the length of stay cables grew continuously. The
longest cable on the current record keeping Russky Bridge in Russia
has a length of 579.83 m. However, these encouraging break-
throughs come at price and present new challenges to engineers.
A typical problem of concerns is the excessive vibrations of
bridge stay cables. Under the combined effects of low inherent
structural damping and long flexible feature, stay cables are prone
to dynamic excitations due to various environmental factors, such
as rain combined with wind and nonlinear coupling between
motions of cables, deck and/or pylon [1]. Numerous cable vibration
control solutions have been proposed and implemented in field
with various levels of success. Installing helical wires on the cable
surface, which proves to be an effective aerodynamic countermea-
sure to suppress rain–wind-induced vibrations [2], has now
become a standard requirement of manufacturing stay cables.
External dampers and cross-ties are capable to ‘‘calm down’’ cables

excited by different mechanisms. While the former has been
widely used on site and the design tools are more matured [3];
the mechanics of the latter is still not completely apprehended
despite its increasing popularity on new bridges [4] and in the
rehabilitation of existing ones [5].

In the case of cross-tie solution, a cable which has exhibited or
is expected to experience large amplitude vibrations (referred to as
the ‘‘target cable’’ in the rest of the paper) is inter-connected with
its neighbouring cable(s) through transverse secondary cables, i.e.
cross-ties, and thus forms a cable network. It was understood from
the past studies that the performance of a target cable could be
enhanced by the application of cross-ties through ways of increas-
ing the in-plane stiffness [6–8], introducing additional structural
damping to the system [9–11], and allowing the energy accumu-
lated in the oscillating target cable being redistributed to more
‘‘calm’’ neighbouring cables [12]. However, some literature
reported that the variation of one specific physical and/or geomet-
rical parameter of a cable network would generally result in con-
flicting effects by enhancing one advantage but sacrificing the
other. For example, the experimental studies by Yamaguchi and
Nagahawatta [10] and Sun et al. [11] both indicated that stiff type
cross-tie would have more considerable effect on increasing the
network in-plane stiffness, whereas soft type cross-tie would lead
to higher raise of structural damping. A proper understanding of
how changes in certain system parameters would affect the gain
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and loss of these benefits and thus the overall effectiveness of cable
network is imperative to an efficient cross-tie design. The accurate
quantification of these impacts would be possible through the ana-
lytical approach.

Due to the complexity of cable network behaviour, only a few
analytical studies have been conducted so far. Caracoglia and Jones
were perhaps the first who attempted the analytical approach.
They proposed models of a basic two-cable network and a more
general non-orthogonal network system in two companion papers
[6,7]. In both models, the main cables were assumed to be taut
cables, and cross-ties were assumed to be rigid rods or linear elas-
tic springs. The modal solutions were obtained either analytically
in the case of simple configuration [6] or numerically for more
complex layouts [7]. Ahmad and Cheng [8] developed an analytical
model of a general cable network consisting of n horizontally laid
main taut cables interconnected by a single line of transverse rigid
cross-ties. The modal solutions were derived analytically. The key
system parameters were identified from the system characteristic
equation and their respective impact on the system modal
response were analytically studied [13]. In a subsequent work
[14], the effect of cross-tie stiffness on the modal response of a
cable network was investigated. In the proposed analytical model,
the taut cable assumption was applied to the main cables whereas
the behaviour of flexible cross-tie was modelled as reversible ten-
sion/compression linear spring connector. The role of cross-tie
stiffness was explored and the results showed that when a more
flexible cross-tie was used, a ‘‘modal evolution’’ phenomenon
would occur, of which the local modes observed in a corresponding
cable network with stiffer cross-tie would evolve into global
modes. Giaccu and Caracoglia [15] investigated the nonlinear
interaction between main cables and cross-ties by employing a

generalized power-law stiffness model for the cross-ties. An equiv-
alent linearization method was used to find the approximate
modal response. It is worth pointing out that all of the above
analytical studies focused on the in-plane stiffness and modal
frequency of cable networks. The structural damping property of
the main cables and cross-ties are neglected in the analysis. Thus,
these analytical models are not capable of predicting how the
structural damping of a target cable would be affected after it is
connected to its neighbours, neither can they adequately infer
the optimal cross-tie location. Needless to affirm that for an
optimal design of cross-tie, the combined effects on the network
frequency and the damping property should be considered.

In view of the above mentioned research needs, the current
paper aims at extending the cable network analytical model devel-
oped earlier by the authors [8] by including the damping property
of main cables in the formulation. The network system character-
istic equation will be derived analytically. The equivalent modal
damping ratio of the cable network will be determined by solving
the associated complex eigenvalue problem. The in-plane modal
behaviour, including the modal frequency, the mode shape and
the modal damping property will be examined. The results will
be compared and verified with those yielded from independent
finite element simulations. The recommended range of optimum
cross-tie installation location will be proposed, within which both
the in-plane stiffness and the damping level of the target cable will
be increased to a certain required level.

2. In-plane free vibration of orthogonal two-cable networks

In a real cable network system, structural damping exists in
both main cables and cross-ties. The role of a cross-tie in the

Nomenclature

A, B shape function constants of cable transverse displace-
ment

B2j�1, B2j shape function constants of left and right cable seg-
ments of the jth cable

c damping coefficient per unit cable length
f frequency of a cable network
f1 fundamental frequency of the target cable
fj fundamental frequency of the jth cable
Hj pretension in jth cable
Lj length of jth cable
l2j�1 length of the left segment of jth cable
l2j length of the right segment of jth cable
mj mass per unit length of the jth cable
n mode number
nG mode number of the global mode
nLS mode number of the local left segment mode
nRS mode number of the local right segment mode
OL horizontal offset of the second cable on the left end
OR horizontal offset of the second cable on the right end
Rj complex parameter of the jth cable,

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðXgjÞ

2 � i � 2pnjXgj�
q

[S] coefficient matrix
v(x, t) transverse displacement of a cable
�vðxÞ shape function of the cable transverse displacement
�v2j�1ðxÞ transverse displacement shape function of the left seg-

ment of the jth cable
�v2jðxÞ transverse displacement shape function of the right seg-

ment of the jth cable
{X} vector containing all four unknown shape function con-

stants

aj complex wave number of the jth cable,

aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjx2�i�2mjnjxx0j

Hj

r

v non-dimensional damping relation parameter, v = n2/n1

e2j�1 segment ratio of the jth cable left segment, e2j�1 = l2j�1/
Lj

e2j segment ratio of the jth cable right segment, e2j = l2j/Lj

;2j�1 product of system parameters of the jth cable left seg-
ment, ;2j�1 ¼ Xgje2j�1

;2j product of system parameters of the jth cable right seg-
ment, ;2j ¼ Xgje2j

cj complex mass–tension ratio parameter of the jth cable,

cj ¼
HjRj=Lj

H1R1=L1

gj frequency ratio of the jth cable, gj = f1/fj

kj length ratio parameter of jth cable, kj = L1/Lj

N non-dimensional network modal damping ratio,
N = neq/n1

neq equivalent structural damping ratio of the cable net-
work

nj structural damping ratio of the jth cable
X complex non-dimensional cable network frequency,

X = pf/f1 = Xre + i �Xim

X0 non-dimensional undamped cable network frequency
Xim imaginary part of complex frequency X of the cable net-

work
Xre real part of complex frequency X of the cable network
xo undamped circular frequency of the cable
x complex circular frequency of the cable network
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