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advanced filling procedure. In order to determine the maximum formwork pressures, a series of form-
work filling tests, with SCC being pumped from the base of the formwork, have been performed at the
Magnel Laboratory for Concrete Research of the Ghent University. Numerical simulations of these form-
work filling tests have also been performed for comparison with the experiments. During the filling pro-
cess, the formwork pressures were measured close to the base of the formworks, where the maximum
Numerical modelling pressures were expected to occur. The measured formwork pressures were finally compared with the
Formwork pressure computed formwork pressures. Both the experiments and the simulations in this study revealed that
Self-compacting concrete the formwork pressures during the filling tests were slightly higher than hydrostatic for SCC pumped
Base filling from the base of the formworks. This was due to the additional occurring hydraulic losses.

© 2014 Elsevier Ltd. All rights reserved.
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Research significance

Most of the available codes and guidelines for determining the
formwork pressure have been developed for casting processes with
normal vibrated concrete (NVC) [9-13]. Although the DIN 18218
standard [10] gives some design guidelines for use with SCC, these
codes and guidelines are generally not suited for casting with SCC
when pumped from the base at high casting rates (>7 m/h)
[8,15,16]. NVC is traditionally cast from the top of the formwork
in several layers, which are individually vibrated in order to
remove the entrapped air as much as possible and to ensure good
compaction around the steel rebars. As such, the casting rates are
rather low. The base filling technique with SCC, which is presented
in this article, allows for much faster casting rates with still good
compaction. Although the formwork pressures are higher with
base filling compared to top filling, the filling times can be notice-
ably reduced. For the precast industry, this could mean a more cost
effective manufacturing process at a higher production rate.

1. Introduction
1.1. Rheological behaviour of self-compacting concrete (SCC)

SCC has been developed in Japan during the 1980s. At that time,
the Japanese construction industry encountered many problems
due to a lack of skilled and qualified workmen, which slowed down
the construction pace and impaired the durability of new concrete
structures. During the 1990s, SCC gradually made its entrance into
Europe through the Netherlands and the Scandinavian countries,
and since then, the amount of SCC being applied in construction
is continuously increasing, together with the number of countries
where it is being used [1,2].

According to De Schutter [1], SCC can be defined as a concrete
which needs to possess sufficient fluidity in order to be able to fill
a formwork completely (filling ability) without the aid of other
forces than gravity, even when having to flow through narrow gaps
(passing ability), but also showing a sufficient resistance to segre-
gation, during flow and in stationary conditions (stability). In order
to achieve sufficient fluidity in SCC, without increasing the water
content, super-plasticizers must be applied. Only adding super-
plasticizers to traditional concrete is not sufficient to create SCC,
due to the large amount of coarse aggregates, which can form par-
ticle bridges when flowing through a narrow gap, causing blocking.

Shear stress (Pa)

Therefore in order to fulfil the passing ability condition, the
amount of coarse aggregates is reduced. On the other hand, extra
amounts of fine materials, like limestone filler, fly ash or silica
fume are added in order to increase the stability of SCC [1,2].
Several material models are available for describing the rheo-
logical behaviour of fresh concrete, such as the Bingham model
[3], the modified Bingham model [2] or the Herschel-Bulkley
model [4]. In all these material models a (dynamic) yield stress is
defined, which is the minimum value of the applied shear stress
needed to maintain flow. For the present study the Herschel-
Bulkley model has been selected, because this model is able to
capture the fresh behaviour of a wide variety of SCC mixes. The
Herschel-Bulkley model is formulated mathematically in

THg = ToHB + KHB(’i})nHB (1)

where: the index HB stands for Herschel-Bulkley, 7y the shear
stress in the material [Pa], y the shear rate in the material [1/s],
Toyp the yield stress [Pa], Kyp the consistency factor[Pa s"] and nyp
the consistency index [-].

The Bingham model can be considered as a special case of the
Herschel-Bulkley model, for which the consistency index nyp
equals one. Using the Herschel-Bulkley model to describe the
steady state behaviour of SCC is not so straightforward though.
The consistency factor K has no physical meaning. The dimension
of Kyp is Pa s”, meaning that the consistency factor is also depen-
dent on the consistency index nyg. Only when nyg equals one
(Bingham), the consistency factor Ky can be regarded as the plas-
tic viscosity p, of the concrete. Furthermore, the apparent viscos-
ity, defined as the ratio between the instantaneous shear stress
and shear rate, is becoming infinite when the shear rate
approaches zero. This singularity will have to be handled properly
in numerical simulations, as will be explained in Section 3.2.

Depending on the mix design, SCC in the fresh state can show
thixotropic behaviour and shear thickening to various degrees.
Thixotropy can be defined as a reversible build-up and breakdown
of internal structure, due to flocculation or coagulation of cement
particles for which the influence of inter-particle forces is still sig-
nificant. Shear thickening is an increase in apparent viscosity with
increasing shear rate, when no yield stress is present. When the
fluid has a yield stress, the apparent viscosity will first decrease
when the shear rate increases, and from a certain shear rate value
on, the apparent viscosity will increase again when the shear
rate further increases (see Fig. 1). The effect of shear thickening
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Fig. 1. Typical shear stress vs. shear rate curve (left) or apparent viscosity vs. shear rate curve (right) for cementitious materials [5].
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