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a b s t r a c t

The stiffness matrix and load vector for an imperfect Euler–Bernoulli beam-column with generalized end
conditions subjected to axial and transverse loads are presented. The proposed method includes the
effects of initial imperfections (i.e., out-of-straightness, out-of-plumbness, and axial load eccentricities
at both ends), a two-parameter elastic foundation, partially restrained sidesway and rotational semirigid
connections at both ends, and transverse and end axial loads (tension or compression) on the stiffness
matrix and load vector. The proposed method is capable of solving the second-order response and lateral
stability, and capturing the phenomenon of deflection reversals in 2D framed structures by using a single
segment per element. The effects of shear deformations and torsion along the member are not included in
the present research. Three comprehensive examples are provided to show the effectiveness and validity
of the proposed matrix method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The second-order and lateral stability analyses of structures
made of beam-columns on elastic foundation are of great impor-
tance in structural and geotechnical engineering (e.g. buried pipe-
lines, railroad tracks, and foundation systems for buildings and
bridges). However, to include the continuity of the soil, multiple-
parameter models have been developed by different authors.
Perhaps, the Pasternak model has been the most utilized model
during recent years which includes transverse springs (Winkler’s
model) connected by a shear layer [1].

Beam-columns on elastic foundations under transverse and
axial loads have been studied independently by numerous authors.
Timoshenko and Gere [2] analyzed the buckling of a bar with
hinged connections on an elastic foundation subject to a concentric
axial load applied at both ends and a distributed axial load along
the member. Hetenyi [1] presented a classic procedure for the elas-
tic stability of hinged and clamped beam-columns supported on
elastic foundation developing closed form solutions for particular
cases like free-free, hinged-hinged and clamped-clamped. Jones
[3] presented a model for beams on elastic foundation (Winkler
type) under transverse load with free, hinged, clamped ends and

rotational end restraints utilizing the finite difference method.
Morfidis and Avramidis [4] introduced the stiffness matrix for both
Bernoulli and Timoshenko beams including the effects of a two-
parameter elastic foundation represented by a spring and a shear
layer. Their approach included shear deformations, semi-rigid con-
nections and rigid offsets showing the simplicity of the method
compared to the Finite Elements Method (FEM).

The second-order stiffness matrix for a beam-column on elastic
foundation was developed by Areiza-Hurtado et al. [5] including
the combined effects of bending and shear deformations as well as
the shear component of the axial load. Arboleda-Monsalve et al. [6]
presented the second-order dynamic stiffness matrix of a beam-
column on a two-parameter elastic foundation including transverse
time-dependent load and a static axial load as well as the
coupling effects of bending and shear deformations. Their proposed
matrix method is capable of solving the static, dynamic and
stability analyses of framed structures using a single element per
member.

On the other hand, the effects of initial geometric imperfections
on the second-order and lateral stability of framed structures made
of beam-columns have been studied by many researchers. Initial
imperfections reduce the axial load capacity of the individual
members and that of the frame as a whole causing additional lat-
eral deflections in frame structures subject to lateral and vertical
loads and possible premature lateral instability. Razzaq and Calash
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[7] studied the effects of biaxial partial end restraints for nonsway
columns with biaxial crookedness and residual stresses. The biaxial
semi-rigid end connections had linear, elastic-plastic, or trilinear
moment-rotation characteristics. They concluded that residual
stresses were less detrimental to column strength than the initial
crookedness; and crooked columns with or without residual stres-
ses their strength increase when the degree of end fixities are
increased. Chan and Zhou [8] presented the stability analysis of
steel members and structures including the effects of initial imper-
fections on the tangent and secant stiffness matrices using a single
element per member. They concluded that the initial imperfections
induce adverse effects on the behavior and capacity of beam-
column structures becoming less adverse when the structure is
controlled by the P-D effect and more notable when is controlled
by for P-d effect. Chan and Gu [9] presented the exact tangent
and secant matrices for an initial curved beam-column subjected
to end axial force and moments using a single element per mem-
ber. The proposed element can be used as a benchmark element
in the second-order analysis of 2D and 3D frames. Later, Chan,
Huang and Fang [10] presented a finite element approach for the
large-deflection and inelastic analysis of imperfect steel frames
with semirigid bases; three approaches were used to describe the
effects of the initial imperfections. Results showed that initial geo-
metric imperfections reduce the critical elastic buckling loads and
their effect must not be ignored. Xu and Wang [11] analyzed the
effects of out-of-straightness and out-of-plumbness on the effec-
tive length factor and column strength. They found that the out-
of-straightness produced a greater instability on columns when
compared to the out-of-plumbness. They concluded that ‘‘Given
the same initial value of initial geometric imperfection, the influ-
ence of the out-of-straightness on the column effective length fac-
tor is almost doubled as that of the out-of-plumbness. This finding
is consistent with current practice in which the tolerance for the
out-of-straightness and the out-of-plumbness are L/1000 and
L/500, respectively’’.

Smith-Pardo and Aristizabal-Ochoa [12,13] developed expres-
sions and design aids for transverse and longitudinal deflections

of an axially restrained beam-column under transverse and axial
static loads. The model included the second-order analysis and
the effects of initial imperfections represented by a camber. Aristi-
zabal-Ochoa [14] developed a closed-form expression for beam-
columns that undergo axial elongation not only from the applied
axial forces but also from the transverse deflections. A general
solution was derived for the combined effects of end moments, a
uniformly distributed load, series of concentrated loads, sidesway
and out-of-straightness. Aristizabal-Ochoa [15] also presented a
set of second-order slope-deflection equations for beam-columns
including the effects of initial curvature, out-of plumbness, axial
load eccentricities and semi-rigid connections. His method is capa-
ble of capturing the phenomenon of reversals of deflections as the
axial loads are increased. More recently, Aristizabal-Ochoa [16]
introduced an analytical analysis and closed-form equations to
study the second-order response of 2D multi-column systems
composed by imperfect Euler-Bernoulli beam-columns with semi-
rigid connections. He concluded that the second-order response is
strongly affected by the magnitude and sign of initial geometric
imperfections, end fixities and lateral bracing. Initial imperfections
in multi-column systems can contribute to reversals in the lateral
deflections and they might become unstable at lower axial loads
when compared to systems with perfectly straight vertical
columns.

The main objective of this paper is to present the second-order
stiffness matrix and load vector of an imperfect prismatic beam-
column including the combined coupling effects of a uniformly dis-
tributed two-parameter elastic foundation, eccentric axial loads
(tension or compression) applied at both ends, initial geometric
imperfections (i.e., initial curvature and out-of-plumbness), trans-
verse loadings, and generalized elastic conditions at both ends of
the member (shear and semi-rigid bending connections). The
effects of shear deformations and torsion along the member are
not included. The proposed method is an extension of the algo-
rithm presented previously by Aristizabal-Ochoa [14–20] and
Areiza-Hurtado et al. [5]. The proposed method is capable of cap-
turing the first and second-order behavior, elastic stability of

Nomenclature

A0, AP, BP and CP Constants for the particular solution of the dif-
ferential Eq. (6)

bo, . . . , bm

coefficients of the Fourier series that represent the ap-
plied transverse load

b2
;R2; F2;D2;Q ; �x; Sa; Sb dimensionless parameters

C1, C2, C3, C4 = unknown constants required in the analysis
according to the end conditions (see Eq. (17))

d1, . . . , dn coefficients of the initial imperfection represented as a
sinusoidal series

Do initial out-of-plumbness
E elastic modulus of the material
ea and eb eccentricities of axial load P at the ends A and B, respec-

tively
I moment of inertia of the beam-column cross section;
[Kst] stiffness matrix for analysis under axial and transverse

loads
ks and kG two parameters of the elastic foundation [ballast modu-

lus ks, and transverse modulus kG]
ja and jb

stiffness of the rotational connections at A and B,
respectively (force � distance/radian)

L beam-column span

{MEI} load vector (i.e., fixed-end forces and moments in mem-
ber AB due to initial imperfection and external forces)

Mst bending moment
Mst dimensionless static bending moment
P axial load applied at the ends of the shear beam-column

(+ compression, � tension)
q(x) applied lateral load
Q applied concentrated lateral load
Sa and Sb stiffness indices of the lateral bracings at ends A and B of

the shears beam-column, respectively
Vst shear force
Vst dimensionless bending moment
x coordinate along the centroidal axis of the shear beam-

column
y0(x) initial imperfection of the beam-column (see Fig. 2)
y1(x) static lateral deflection of the centroidal line of the

beam-column (see Fig. 2)
�y1ð�xÞ dimensionless Static lateral deflection of the centroidal

line of the beam-column
yst(x) total static lateral static deflection of the centroidal line

of the beam-column (see Fig. 2)
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