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a b s t r a c t

Large reductions in embodied carbon can be achieved through the optimisation of concrete structures.
Such structures tend to vary in depth along their length, creating new challenges for shear design. To
address this challenge, nineteen tests on non-prismatic steel reinforced concrete beams designed using
three different approaches were undertaken at the University of Bath. The results show that the assump-
tions of some design codes can result in unconservative shear design for non-prismatic sections.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Non-prismatic concrete beams can provide steel and concrete
savings when used to replace equivalent strength prismatic ele-
ments. In a variable section reinforced concrete beam a portion
of the shear force may theoretically be carried by a suitably
inclined top or bottom flange, yet such beams have been found
to fail prematurely, suggesting codified methods are unable to
account for the varying section shapes found in optimised struc-
tures. Given that optimised structures tend to be non-prismatic,
understanding these failures and providing appropriate guidance
for their design is hugely important.

2. Tapered beams

2.1. Shear behaviour

The derivation of shear stresses through equilibrium consider-
ations of a homogenous uncracked and isotropic beam is relatively
straightforward, but the behaviour of a reinforced concrete section
is more complex. In a reinforced section, cracks will form when the
principal tensile strain exceeds the tensile capacity of concrete and
these diagonal cracks typically propagate from the tension face of
the member towards the neutral axis.

There are conventionally considered to be six contributing fac-
tors by which a reinforced concrete beam can carry shear, Fig. 1.

When present, shear reinforcement carries stress over cracks as
they open under loading and confines the section. Although aggre-
gate interlock is estimated to carry significant shear force in the
uncracked section [1], as cracks open the capacity to transfer stres-
ses via aggregate interlock is minimal [2]. Dowel action by longitu-
dinal reinforcement is contentious, with Kotsovos [2] showing it to
be extremely limited in the prismatic section.

The behaviour of prismatic and tapered concrete sections in
shear is compared in Fig. 1. In sections that taper towards their
supports, the interaction of the diagonal cracks with the path of
the compression force at the supports is assumed to be critical.

Inclined compression or tension forces can theoretically affect
the shear resistance of the section. It is suggested [3–7] that for
sections whose depth increases in the direction of increasing
moment an effective shear force for design be given by Eq. (1),
which is valid for members with shear reinforcement:

V 0Ed ¼ VEd � Vccd � Vtd ð1Þ

where V 0Ed is the reduced design shear force; VEd is the shear force on
the cross section; Vccd is the vertical component of force in the
inclined compression chord and Vtd is the vertical component of
the inclined tension chord. MEd is the moment on the cross section.

Provided suitable limits on stress in the web compression strut
are not exceeded, the sum of Vccd and Vtd (Eq. (1)) could theoreti-
cally be made equal to the applied shear force, negating require-
ments for transverse steel. For a beam with yielding tension
reinforcement of constant area (As) and without normal force this
could be achieved by placing the bar at an effective depth that is
proportional to the bending moment at each point along the beam
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(Eq. (2)). Such an approach would make the vertical component of
force in the bar (Vtd) theoretically equal to the applied shear force,
Eq. (3).

zi ¼
MEd;i

Asfyk
ð2Þ

VEd;i ¼
dMEd;i

dx
¼ Vtd;i ð3Þ

where zi is the lever arm between tension and compression forces at
position i; MEd,i is the applied moment at position i; As is the con-
stant area of longitudinal reinforcement and fyk is its characteristic
yield strength; VEd,i is the applied shear force at position i; dx is an
increment of length and Vtd,i is the vertical component of force in
the bar at position i.

However, utilising a longitudinal bar to provide vertical force
capacity close to the supports in a simply supported beam requires
the bar to be fully anchored at its ends and yielded along its entire
length. Furthermore, for a structure subject to an envelope of loads
the longitudinal reinforcement position will be determined by the
maximum moment on each section. It is feasible that the maxi-
mum moment and shear forces on a section will not originate from
the same load case. In such a situation, a bar placed for moment
capacity will then be incorrectly inclined to provide the desired
vertical force, and thus additional transverse reinforcement will
be required.

2.2. Design methods

2.2.1. Truss model
ACI 318 [8] and BS EN 1992-1-1 [4] allow the shear capacity of a

tapered section with transverse reinforcement to include the
effects of inclined tension and compression forces, Eq. (1). Both
codes are based on the truss analogy, the premise of which [9,10]
is that cracked concrete in the web resists shear by a diagonal uni-
axial compressive stress in a concrete strut, pushing the flanges
apart and causing tension in the stirrups that are then responsible
for holding the section together. With a compression strut angle of
45�, the model consistently underestimates shear strength. To cor-
rect this ACI 318 [8] adds a ‘concrete contribution’, while BS EN
1992-1-1 [4] assumes that once cracked the concrete provides no
contribution to shear capacity and instead allows a flatter strut
angle (down to 22�, subject to stress limits in the diagonal concrete
strut) to be chosen, with both approaches replicating experimental
observations.

The additional tensile force, DF, arising from the normal stress
components of the inclined web compression struts of the truss
model [4,8] must be included when calculating the force in the
inclined chords to prevent over-estimation of the contribution of
an inclined chord to shear capacity.

2.2.2. Compressive force path method
The compressive force path (CFP) method premises that the

behaviour of a reinforced concrete beam can be simplified into
three elements – a concrete frame, a steel tie of flexural reinforce-
ment and a zone of concrete cantilevering teeth which form
between successive cracks in the concrete section [11], Fig. 2.
The uncracked compression zone is proposed to sustain both
the compressive flexural force and the entire shear force. Since

Nomenclature

Asw area of transverse reinforcement (mm2)
avx Max/Vax (mm) in the CFP method
bw web width (mm)
dx an increment of length
fyk characteristic yield strength of steel reinforcement
Max applied bending moment (N mm) on a section in the

CFP method
Mcx is the moment corresponding to shear failure (N mm) in

the CFP method
MEd,i the applied moment at position i
Mf the flexural capacity (N mm) in the CFP method
s transverse reinforcement spacing (mm)
V0Ed the reduced design shear force, Eq. (1)
Vax applied shear force (N) on a section in the CFP method

Vcx shear force at failure in the CFP method
VEd,i the applied shear force at position i
Vf shear force corresponding to flexural failure in the CFP

method
Vtd vertical component of force in the bar
Vtd,i the vertical component of force in the bar at position i
x (subscript) denotes a given cross-section at a distance x

mm from the support in the CFP method
zi the lever arm between tension and compression forces

at position i
qw ratio of the area of tension steel to the web area of con-

crete to the effective depth in the CFP method
qw Asw/s/bw (reported in %)

Prismatic section

(e) & (f)

(a) Compression concrete
(b) Tension concrete
(c) Flexural reinforcement

(d) Shear reinforcement
(e) Aggregate interlock
(f) Dowel action

Tapered section
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Fig. 1. Contributing factors to shear resistance in tapered and prismatic sections.
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Fig. 2. The CFP method [11].
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