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A generic time domain integration formulation for linear systems with non-classical convolution
damping models is presented. The non-classical damping force is assumed to depend on the past history
of velocity through a convolution integral over a causal dissipative kernel function. The time domain
implementation formulation is developed using the Newmark constant average acceleration framework.
To emphasize the accuracy of the proposed scheme, numerical comparisons are made for a three-
degrees-of-freedom system and an axially vibrating rod problem reported in literature. The generality
of the formulation is shown by simulating the response of a cantilever beam enhanced with two known
standard dissipation functions: the exponential and the Gaussian model. The implementation of the
proposed scheme is also presented.
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1. Introduction

Structural dynamic analysis is mainly characterized by three
forces: the inertia force, the damping force and the stiffness force.
Out of these, the mechanics for both the inertia and the stiffness
force are well understood whereas the damping force represents
an observed phenomenon. Damping, in simplistic terms, could be
defined as the process by which a certain portion of the energy
in a vibrating system is irreversibly lost causing decay in the sys-
tem response. Despite having a large amount of literature on the
subject, the underlying physics is only known in a phenomenolog-
ical ad hoc manner, making damping an overall mystery in the
general dynamic analysis of structures. A major reason of this
could be the fact that there is no single universally accepted model
for damping [1]. The ambiguity involved in the modelling of
damping is mainly due to the intricacies involved in understanding
the state variables controlling the damping forces [2].

In classical dynamics, for a discrete system, the damping force is
predominantly represented by a viscous model, proposed by Ray-
leigh in 1877 [3], through his famous dissipation function. This is
the most popular model currently used both in practice and in
research mainly due to its simplicity, because the whole phenom-
enon of damping is mathematically reduced to the estimation of a
single parameter called damping ratio [4]. Many studies in the
past have shown that the viscous damping model suggested by
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Rayleigh is only a mathematical idealization and the “real damp-
ing” could be different [1,2]. This sort of mathematical idealization
may lead to “modelling errors” in dynamic response analysis. The
manifestation of these modelling errors has been obtained in
various branches of engineering [5,6]. This has paved the way for
an increasing interest in other types of models which represent
damping forces in a more general manner as compared to the
classical viscous damping model [7].

One such model of great interest is the non-classical convolu-
tion damping model in which the damping force is represented
by convolution integrals, which take into account the complete
past history of responses other than just the instantaneous veloci-
ties as represented by viscous damping model [2,7]. The damping
force f(t), using such a model could be expressed as,

f() = / Ceg(t — Di(T)de (1)

In this equation, g(t) represents the damping kernel function
and G, represents the damping coefficient. The kernel function
g(t) could represent any causal model which makes the energy
dissipation functional non-negative [8]. Normally, g(t) is taken as
the normalized damping function [9], which satisfies,

/Omg(t)dt ~10 2)

In literature this is commonly referred to as non-viscous damp-
ing model [1], considering the fact that integration by parts of Eq.
(1) would result in the damping force being expressed as a function
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of displacement. But considering the fact that damping force in its
form as given in Eq. (1) is in a convolution format depending on the
past history of velocities, the authors prefer to address the formu-
lation as non-classical convolution damping.

Incorporation of this model described in Eq. (1) into the
dynamic equilibrium equation would result in an integro-differen-
tial equation expressed as,

M{ﬁ(f)}Jr/o Gg(t — D){i(r)}dt + K{u(t)} = {P(t)} (3)

Here, M and K € R¥*N are the mass and stiffness matrices and
{P(t)} e RN is the force vector and the convolution damping term
has the same descriptions as defined above in Eq. (1) with C, rep-
resenting the damping coefficient matrix. Similarly {ii(t)}, {ii(1)} &
{u(t)} are the acceleration, velocity and displacement vectors. The
initial conditions associated with Eq. (3) are as follows,

{u(0)} = {uo} € R"; and {i(0)} = {io} € R" (4)

As Eq. (3) is an integro-differential equation, no classical meth-
ods like Newmark family methods can be applied directly for its
solution [9]. So in recent years, considerable amount of research
efforts have been put to solve Eq. (3) to obtain system responses.
The majority of the research conducted presented solution
schemes for systems in which the damping kernel function adopts
an exponential model. McTavish and Hughes [10] adopted the dou-
ble exponential model proposed by Golla and Hughes [5] for the
damping kernel function and proposed a scheme which resulted
in a second order equation of motion. This second order equation
of motion was then solved using classical time integration
techniques. This scheme is known as the GHM method. Its main
drawback is the use of a large number of internal dissipation coor-
dinates used to capture the frequency dependent viscoelastic
behavior which enlarges the matrix size. Adhikari and Wagner
[7] proposed a time domain analysis scheme for systems with
exponential damping kernel function based on an extended state
space representation of the equation of motion. The efficiency of
the proposed numerical method for the calculation of displace-
ments relies on the elimination of the need for explicit calculation
of the velocities and usually a large number of internal variables at
each time step. Cortes et al. [9] employed Laplace transformation
on the equation of motion containing exponential damping kernel
function and derived an equivalent second order equation of
motion which was then solved using implicit standard time inte-
gration schemes. The main advantage of this method was that it
did not employ any internal variables which normally increased
the size of the problem. The main disadvantage is that the Laplace
transformation results in a differential equation with time deriva-
tive orders higher than two and the authors admit the difficulty in
performing the mathematical manipulation, when the damping
model has more than two exponential kernel functions.

In this paper, a generic time domain formulation for multi-
degree of freedom systems represented by Eq. (3) is presented. This
is called ‘generic’ because in comparison to majority of the earlier
works, this formulation could be used for any causal model that the
damping kernel function adopts. The other main advantage is that
the formulation uses the Newmark framework with some modifi-
cations and as a result could be easily incorporated into an existing
commercial software package. This aspect has been demonstrated
by incorporating the proposed formulation into the commercial
package “Ruaumoko” maintained by the second author and is
currently under testing. Latest version of Ruaumoko yet to be
released gives the option of incorporating convolution damping
models for dynamic analysis of structures, though presently it is
fully restricted to linear analysis. The implementation logic is
presented in Appendix B.

2. Mathematical derivation

In this section the time domain formulation is developed using
Newmark constant average acceleration frame work. At time t, the
dynamic equilibrium equation with linear generic damping model
of the form presented in Eq. (1) is given by Eq. (3).

At time t + AT, this equation becomes,

M{i(t + AT)} + /HAT Crg(t + AT — 7){u(t)}dt + K{u(t + AT)}
0
={P(t+AT)} (5)

Here, a revised Newmark constant average acceleration method
(rather than the classical incremental approach) is adopted to solve
the equation of equilibrium at time t + AT [11]. The fundamental
assumption in the classical Newmark constant average accelera-
tion method is that the acceleration is assumed to be constant
during the time step with a value equal to the average of the accel-
erations at the beginning and end of the time step. The classical
Newmark method starts with the difference in the response
between two successive time steps AT apart and results in solving
an incremental equilibrium equation. But the revised Newmark
scheme starts with equation of equilibrium at time t + AT (refer
Appendix A for further details).

In order to have a convenient formulation for the Newmark
implementation, the convolution integral is split and is given as
follows;

M{ii(t + AT)} + /t Cug(t + AT — T){u(t)}dt
0

+ / - Cug(t + AT — T){1(7)}dt + K{u(t + AT)} = {P(t + AT)}
(6)

The above equation can be rewritten in incremental terms as
(refer Appendix A),

MAii(t) + Ail} + /: Ceglt + AT — T){ix(7)}de

X /HAT Crg(t + AT — 1){i1(t) }dt + Ks{u(t)} + Kr{Au}
= {P(t+AT)} "’

Here, {Au} refers to increment in displacement, {Aii} refers to
increment in acceleration, Ky refers to the tangent stiffness and
Ks refers to the secant stiffness. For linearly elastic structures, the
secant and tangent stiffness matrices are identical to the initial
elastic matrices. Though the present paper addresses only the
linear dynamics scenario, the above notation of secant and tangent
stiffness matrix is mainly retained to keep the generality of the
Newmark integration scheme. In Eq. (7), both the acceleration
and displacement within a time step are represented in their
incremental components, whereas the velocity still remains as a
continuous function. There are two integral terms containing
velocity functions in Eq. (7); one varies from O to t and the other
from t to t+ AT. So, the velocity term varies both globally (i.e. 0
to t) and locally (i.e. t to t + AT). Now for convenience, let’s denote
the convolution integral from O to t as,

(Famy) = [ Cigle+ AT - )a(e))dr (8a)

So Eq. (7) could be rewritten as,

M) + A} + {Famp) + [ " Gt + AT - D))}t
+ Ks{u(t)} + Kr{Au} = {P(t + AT)} (8b)
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