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a b s t r a c t

This article presents an accurate, efficient and stable algorithm to analyze the nonlinear vertical
vehicle–structure interaction. The governing equilibrium equations of the vehicle and structure are
complemented with additional constraint equations that relate the displacements of the vehicle with
the corresponding displacements of the structure. These equations form a single system, with displace-
ments and contact forces as unknowns, that is solved using an optimized block factorization algorithm.
Due to the nonlinear nature of contact, an incremental formulation based on the Newton method is
adopted. The vehicles, track and structure are modeled using finite elements to take into account all
the significant deformations. The numerical example presented clearly demonstrates the accuracy and
computational efficiency of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The development of efficient and robust algorithms that can
accurately analyze the nonlinear vehicle-structure interaction is
still an important issue, especially due to the increase of the
corresponding operating speeds.

A vehicle-structure interaction problem is considerably more
complex than a typical structural dynamics problem due to the rel-
ative movement between the two subsystems and the associated
constraint equations relating the vehicle and structure displace-
ments. In a significant number of studies available in the literature
about the vehicle–structure interaction, the structure and vehicles
are modeled as rigid multibody systems [1,2]. Other authors, such
as Antolín et al. [3] and Tanabe et al. [4], proposed formulations
that additionally take into account the deformation of the struc-
ture. Neves et al. [5] modeled the vehicles and structure using
finite elements, thus considering the deformation of both systems.

When the vehicle and structure are considered as a single sys-
tem, the forces acting on the contact interface are internal forces.
Since the vehicle moves relatively to the structure, to avoid calcu-
lating and assembling the element matrices at each time step Yang

and Wu [6] proposed a new contact element based on a condensa-
tion technique that eliminates the degrees of freedom at the
contact interface. However, since the matrices of these elements
depend on the position of the contact points, the global stiffness
matrix is time-dependent and must be updated and factorized at
each time step. This procedure may demand a considerable
computational effort.

When the vehicle and structure are treated as separate systems,
two different approaches can be adopted: variational formulations
that consider an additional term in the energy of the system can be
used to impose the constraints [7], or the contact forces can be
considered explicitly and treated as externally applied loads, being
the equilibrium of all forces acting on the contact interface
established directly.

In the methods described in [8–11] the contact forces are con-
sidered explicitly but are not treated as unknowns of the governing
equilibrium equations. An iterative procedure is used to ensure the
coupling between the two subsystems. These methods may exhibit
a slow rate of convergence, especially when unilateral contact is
considered or a large number of contact points are required. To
overcome these limitations, Neves et al. [5] developed an accurate,
efficient and robust algorithm to analyze the vertical vehicle–
structure interaction, referred to as the direct method, in which
the governing equilibrium equations of the vehicle and structure
are complemented with additional constraint equations that relate
the displacements of the contact nodes of the vehicle with the
corresponding nodal displacements of the structure, with no
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separation being allowed. These equations form a single system,
with displacements and contact forces as unknowns, that is solved
directly using an optimized block factorization algorithm. The
Lagrange multiplier method and the direct method are equivalent
and lead to identical systems of linear equations. The main advan-
tage of the direct equilibrium of forces, when compared with the
variational formulations, is a better understanding of the physical
meaning of the contact forces, which is particularly important in
complex problems such as the vehicle–structure interaction.

In the present article a search algorithm is used to detect which
elements are in contact, being the constraints imposed when con-
tact occurs. The time integration is performed using the a method
since it provides numerical dissipation in the higher modes while
maintaining second-order accuracy [12]. The proposed methodol-
ogy is implemented in MATLAB [13]. The vehicles and structure
are modeled with ANSYS [14], being their structural matrices
imported by MATLAB.

2. Contact and target elements

When studying the contact between two bodies, one conven-
tionally has a contact surface, and the other a target surface
(see Fig. 1). A two-dimensional node-to-segment contact element
is used in the present formulation.

The direct method [5] introduces additional variables in the
system to impose the contact conditions, whereas in the penalty
method no additional variables are required. Increasing values of
the penalty parameter lead to more accurate solutions, but the
coefficient matrix might become ill-conditioned. In railway
engineering the number of contact points is usually small when
compared with the total size of the problem. For this reason,
the use of the direct method leads to a small additional computa-
tional cost but has the advantage of avoiding ill-conditioned
systems.

In the formulation proposed in [5] the contact constraint equa-
tions are imposed using the direct method, with no separation
being allowed. In the present formulation a search algorithm is
used to detect which elements are in contact, being the constraints
imposed when contact occurs. Since in the present formulation
only the frictionless contact is considered, the constraint equations
are purely geometrical and relate the displacements of the contact
node with the displacements of the corresponding target element.

Fig. 2 shows the two-dimensional node-to-segment contact
element implemented in the present formulation and the local
coordinate system (n1, n2, n3) of the contact pair. The n2 axis always
points towards the contact node, being the two elements separated
by an initial gap g. The forces acting at the contact interface are
denoted by X and the superscripts CE and TE indicate contact
and target elements, respectively.

According to Newton’s third law, the forces acting at the contact
interface must be of equal magnitude and opposite direction, i.e.,

XCE þ XTE ¼ 0 ð1Þ

The displacement vector of an arbitrary point is defined by two
translations, vn1 and vn2 , and a rotation hn3 about the n3 axis. Since
this type of contact element neglects the tangential forces and
moments transmitted across the contact interface, the contact
constraint equations only relate the displacement vn2 of the
contact node with the corresponding displacement of the auxiliary
point k. Each constraint equation is defined in the local coordinate
system of the contact pair and comprises the non-penetration
condition for the normal direction. These equations are given by

vCE � vTE � �gþ r ð2Þ

where r are the irregularities between the contact and target
elements. The gaps are always positive and a positive irregularity
implies an increase of the distance between the contact and target
elements (see Fig. 2).

3. Equations of motion

3.1. Force equilibrium

The a method is an implicit time integration scheme that is
generally accurate and stable [12]. Assuming that the applied loads
are deformation-independent and that the nodal point forces
corresponding to the internal element stresses may depend
nonlinearly on the nodal point displacements, the equations of
motion of the vehicle–structure system given in [5] may be
rewritten in the form

MatþDt þ C½ð1þ aÞ _atþDt � a _at � þ ð1þ aÞRtþDt � aRt

¼ ð1þ aÞFtþDt � aFt ð3Þ

where M is the mass matrix, C is the viscous damping matrix, R are
the nodal forces corresponding to the internal element stresses, F
are the externally applied nodal loads and a are the nodal displace-
ments. The superscripts t and t + Dt indicate the previous and
current time steps, respectively.

To solve Eq. (3) let the F type degrees of freedom (d.o.f.)
represent the free nodal d.o.f., whose values are unknown, and
let the P type d.o.f. represent the prescribed nodal d.o.f., whose
values are known. Thus, the load vector can be expressed as

FF ¼ PF þ DCE
FXXCE þ DTE

FXXTE ð4Þ

FP ¼ PP þ DCE
PXXCE þ DTE

PXXTE þ S ð5Þ

where P corresponds to the externally applied nodal loads whose
values are known and S are the support reactions, whose values
are unknown. Each matrix D relates the contact forces, defined in
the local coordinate system of the respective contact pair, with
the nodal forces defined in the global coordinate system (see Fig. 2).

Substituting Eq. (1) into Eqs. (4) and (5) leads to

FF ¼ PF þ DFXX ð6Þ

FP ¼ PP þ DPXXþ S ð7Þ
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Fig. 1. Contact pair concept.
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