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A new geometrically nonlinear model for homogeneous and isotropic beams with generic section includ-
ing non-uniform warping due to torsion and shear is derived. Each section is endowed with a corotational
frame where statics and kinematics are described using a 3D linear elastic model which extends the
Saint-Venant solution to non-uniform warping cases. The algebra of change of observer and a mixed var-

iational principle give the model in terms of generalized parameters. Using a mixed interpolation the

Keywords:

Nonuniform warping
Geometrically exact beams
Koiter asymptotic formulations

the formulation.

model is implemented within a FEM Koiter analysis highly sensitive to the geometrical coherence of
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1. Introduction

Due to their wide use in engineering practice, linear and nonlin-
ear analyses of beam-like members with thin walled or compact
sections still represent attractive topics for researchers, who aim
to improve both the accuracy of the continuum models and the
efficiency of the FEM solution procedures. Over the last few dec-
ades, hundreds of works regarding beam models have been pub-
lished (see [1,2]| for a detailed overview of the most important
proposals).

Significant contributions regarding the geometric nonlinear
analysis of such structures have focused on the determination of
the elastic buckling load [3-5], the initial post-buckling behavior
[6] and of the whole equilibrium paths [7-12] of single beams
and frames.

The present work deals with the formulation of a new geomet-
rically exact model for homogeneous and isotropic beams sub-
jected to variable warping and undergoing large displacements
and rotations but small strains. It will be used for the evaluation
of the critical and post-critical behavior of assemblages of beams
with generic section. Objectivity is an essential prerequisite for
the model. In a material formulation this requires that both stress
and strain tensors remain unchanged after a rigid body motion or a
change of observer. Objectivity is easily satisfied for a 3D Cauchy
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body, simply by using the Green-Lagrange tensors, but becomes
more complex to verify for beams or shells, described through gen-
eralized quantities defined over a one dimensional (the beam axis)
or two dimensional (the median plane of the shell) domain.

The great majority of beam models are based on the so-called
geometric exact theories [13-15,2,8,16]. They are geometrically ex-
act being coherently derived by assumed simplified 3D finite kine-
matics, but tend to produce over-stiff models or to miss some
important aspects of the solution already present in the corre-
sponding parent linear model. This is particularly evident if we
compare for a 3D beam the constitutive laws, in terms of stress
resultants, obtained on the basis of an exact finite kinematic which
considers a rigid section motion only and those evaluated using the
Saint Venant (SV) rod theory [17]. In particular the shear/torsional
coupling present in the linear solution is not recognized and an “a
posteriori” correction of the shear and torsional stiffness coeffi-
cients is required to avoid locking. Furthermore, as it will be better
discussed in Section 3.4, in 3D finite kinematics, it is not simple to
include in a coherent way effects already present in the SV solu-
tion, as the dependence of the constitutive laws on the Poisson
coefficients, the differences between bending and shear principal
axes or more complex behaviors due to variable warpings.

To overcome these difficulties in this work we exploit the Impli-
cit Corotational Method (ICM) proposed in [18,19], to recover objec-
tive nonlinear structural models by reusing the information
derived from the 3D continuum solutions that define a correspond-
ing parent linear model. The method extends the corotational idea,
initially applied to a whole finite element [20-22], at the contin-
uum level. Similarly to [23,24], the introduction of a corotational
frame (observer) for each point on the beam axis allows the motion
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to be split in a stretch contribution followed by a pure rotation,
according to the decomposition theorem [25]. Using the small
strain hypothesis, linear stresses and the displacement gradient
defined in this corotational frame provide accurate approximations
for the Biot nonlinear stress and strain. These tensors are then
introduced in a mixed variational principle in order to obtain the
model in terms of generalized parameters (stress/strain resultants)
that are expressed in a fixed global frame using a change of obser-
ver algebra, once the corotational rotation is appropriately defined.

The nonlinear model so obtained, in particular the constitutive
laws in terms of stress resultants, retains all the details of the 3D
parent linear solution while its objectivity is ensured implicitly.
This is one of the important differences with respect to other for-
mulations based on kinematical descriptions only [26,8,16,9].

The ICM does not require any ad-hoc assumptions about the
structural model at hand, nor depends on any particular parametri-
zation of the rotation tensor, but actually behaves as a black-box
tool able to translate known linear models into the corresponding
nonlinear ones. Moreover, the direct use of a mixed (stress/dis-
placements) description provides an automatic and implicitly
coherent methodology for generating models free of nonlinear
locking effects, as described in [27-30], and in a format directly
suitable for use in FEM implementations.

Linear formulations for beams are widely available in literature.
The initial extensions of the SV theory to the non-uniform torsion
of thin-walled profiles due to Vlasov [31], has been refined to ac-
count for shear stresses due to warping. Starting from the impor-
tant contributions of Capurso [32] and Tralli [33] a survey on the
more recent developments can be found in [1,34-37] and refer-
ences therein. However many of these proposals only partially ac-
count for the richness of 3D continuum introducing appropriate
hypotheses about the statics and the kinematics of the body when
formulating the one-dimensional model.

Refined beam formulations potentially capable of accounting
for the 3D continuum solution of generic materials exactly are
based on FEM analyses to derive the cross-section stiffness matrix.
Among others, we recall the works of Borri et al. [38,3,39] and the
variational-asymptotic method developed essentially by Hodges
and coworkers [1,7] also suitable for use in geometric nonlinear
cases. For isotropic and homogeneous materials the linear beam
model proposed in [40] is a convenient alternative to these general
proposals, because it explicitly uses a 3D elastic solution that ex-
actly describes the standard Saint-Venant (SV) behavior while ac-
counts, in a simplified but effective fashion, for the shear/torsion
out-of-plane non-uniform warping effects.

In particular the kinematics consider a rigid section motion and
an out-of-plane deformation represented by the three SV warpings
corresponding to shears and torsion (see [41]) amplified through
three independent descriptors variable along the beam axis. The
static, used to define the section compliance matrix, is accurately
obtained by adding to the exact SV solution some further secondary
terms due to the variable warping. The axial secondary stress dis-
tribution is suggested by the kinematic, while a Jourawsky-like ap-
proach is used to evaluate the secondary shear stresses
contribution through the equilibrium condition in the axial direc-
tion. Both the SV and the secondary warping functions are evalu-
ated numerically through a FEM approach (see for instance
[40,41]) allowing the section compliance matrix to account for all
the coupling effects arising from the 3D problem. The resulting
beam model exactly accounts for the SV solution and is valid for
the largest variety of cross section (compact, thin/thick walled
ones).

A mixed finite element suitable to interpolate stresses and dis-
placements accurately is also presented. It directly uses the equi-
librium equation between bi-shear and bi-moment to improve
the accuracy and reduce the number of interpolation parameters.

By means of a block elimination of the variables that do not require
inter-element continuity the element, at the global level, exposes
only 9 kinematical parameters per node and uses a pseudo-com-
patible format to perform the analysis [27,42]. The equilibrium
path is recovered by means of a FEM formulation of the Koiter
asymptotic approach [43-48], that has shown to be highly sensi-
tive to the geometrical coherence of the structural model and of
its finite element interpolation [18,19]. For this reason it consti-
tutes a suitable framework to assess the validity of the proposal.

A series of test cases regarding single beams and frames have
been presented and results are compared with those of existing
1D formulations and furnished by shell analyses using the ABAQUS
code. A good agreement with the shell model results can be always
appreciated also when standard beam formulations, like that em-
ployed in ABAQUS, are not accurate.

2. The implicit corotational method

In this section the ICM will be briefly outlined in a simplified
form already particularized for a beam continuum while readers
can refer to [18,19] for a more detailed discussion of the method.

2.1. Stress and strain tensors in the corotational frame

Let us consider the beam as a Cauchy body [25] referred to the
fixed Cartesian frame with origin O and basis vectors {e;,e,,e;} in
E3. Let the reference configuration also be stress-free. Using a
material description, the polar decomposition theorem allows the
following representation of the deformation gradient F[X] at a
material reference point P identified by its position vector X:

FX] = RIX|U[X], (1)

where U[X] is the symmetric and positive-definite stretching tensor
and R[X] an orthogonal rotation tensor describing the rigid motion
in the neighborhood of X.

The position vector X can be split as

X=se +x (2)

s being a one-dimensional abscissa along the line axis or support
and X = x,e, + x3e; lies on the cross section and defines the fiber
Q[s].

It is possible to evaluate, for each fiber, a constant mean rota-
tion Q so expressing the polar decomposition rotation as

RX] = QRX], 3)

where R[X] is another rotation. Using Eq. (3), the deformation gradi-
ent introduced in Eq. (1) transforms as

FIX] = QF(X], F[X] =RX|UKX] (4)

allowing the motion in the neighborhood of X to be expressed in a
deformation F[X] followed by a mean rigid motion of the fiber. Let-
ting u[X] be the total displacement of X, the following definitions
hold

FIX| =I+VulX], FX]=I+ VilX], (5)

V =9(-)/0X being the material gradient. The relation between
Vu[X] and Vu[X] is simple obtained from Eqs. (4) and (5). From
now on the dependence on X or s will be omitted when it is clear
from the context.

The material description requires that the strain depends only
on U (objectivity) as it happens, for example, using either the
Green-Lagrange strain tensor & = (U? — I)/2 or the Biot strain tensor
& = U — . & is simple to evaluate being quadratic in the displace-
ment gradient, its expression in terms of the symmetric and skew
part of Vii[X],E and W respectively, is
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