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a b s t r a c t

An elasto-plastic model for concrete, based on a recently-proposed yield surface and simple hardening
laws, is formulated, implemented, numerically tested and validated against available test results. The
yield surface is smooth and particularly suited to represent the behaviour of rock-like materials, such
as concrete, mortar, ceramic and rock. A new class of isotropic hardening laws is proposed, which can
be given both an incremental and the corresponding finite form. These laws describe a smooth transition
from linear elastic to plastic behaviour, incorporating linear and nonlinear hardening, and may approach
the perfectly plastic limit in the latter case. The reliability of the model is demonstrated by its capability
of correctly describing the results yielded by a number of well documented triaxial tests on concrete sub-
jected to various confinement levels. Thanks to its simplicity, the model turns out to be very robust and
well suited to be used in complex design situations, as those involving dynamic loads.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behaviour of concrete is rather complex – even
under monotonic and quasi-static loading – because of a number of
factors: (i) highly nonlinear and (ii) strongly inelastic response, (iii)
anisotropic and (iv) eventually localized damage accumulation with
(v) stiffness degradation, (vi) contractive and subsequently dilatant
volumetric strain, leading to (vii) progressively severe cracking. This
complexity is the macroscale counterpart of several concurrent
and cooperative or antagonist micromechanisms of damage and
stiffening, as for instance, pore collapse, microfracture opening
and extension or closure, aggregate debonding, and interfacial fric-
tion. It can therefore be understood that the constitutive modelling
of concrete (but also of similar materials such as rock, soil and
ceramic) has been the subject of an impressive research effort,
which, broadly speaking, falls within the realm of elastoplasticity,1

where the term ‘plastic’ is meant to include the damage as a specific
inelastic mechanism. In fact, elastoplasticity is a theoretical frame-
work allowing the possibility of a phenomenological description of
all the above-mentioned constitutive features of concrete in terms
of: (i) yield function features, (ii) coupling elastic and plastic

deformation, (iii) flow-rule nonassociativity, and (iv) hardening
sources and rules [3]. However, the usual problem arising from a re-
fined constitutive description in terms of elastoplasticity is the com-
plexity of the resulting model, which may lead to several numerical
difficulties related to the possible presence of yield surface corners,
discontinuity of hardening, lack of self-adjointness due to nonassoci-
ativity and failure of ellipticity of the rate equations due to strain
softening. As a consequence, refined models often lack numerical
robustness or slow down the numerical integration to a level that
the model becomes of awkward, if not impossible, use. A ‘minimal’
and robust constitutive model, not obsessively accurate but able to
capture the essential phenomena related to the progressive damage
occurring during monotonic loading of concrete, is a necessity to
treat complex load situations.

The essential ‘ingredients’ of a constitutive model are a convex,
smooth yield surface capable of an excellent interpolation of data
and a hardening law describing a smooth transition between elas-
ticity and a perfectly plastic behaviour. Exclusion of strain soften-
ing, together with flow rule associativity, is the key to preserve
ellipticity, and thus well-posedness of the problem. In the present
paper, an elastopalstic model is formulated, based on the so-called
‘BP yield surface’ [3,4,11] which is shown to correctly describe the
damage envelope of concrete, and on an infinite class of isotropic
hardening rules (given both in incremental form and in the
corresponding finite forms), depending on a hardening parameter.
Within a certain interval for this parameter hardening is un-
bounded (with linear hardening obtained as a limiting case), while
outside this range a smooth hardening/perfectly-plastic transition
is described. The proposed model does not describe certain phe-
nomena which are known to occur in concrete, such as for instance
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1 The research on elastoplastic modelling of concrete has reached its apex in the
seventies and eighties of the past century, when so many models have been proposed
that are now hard to even only be summarized (see among others, [2,5,8,15]).
Although nowadays other approaches are preferred, like those based on particle
mechanics [13], the aim of the present article is to formulate a relatively simple and
robust model, something that is difficult to be achieved with advanced models.
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anisotropy of damage, softening, and elastic degradation, but pro-
vides a simple and robust tool, which is shown to correctly repre-
sent triaxial test results at high confining pressure.

2. Elastoplasticity and the constitutive model

This section provides the elastoplastic constitutive model in
terms of incremental equations. The form of the yield surface is
given, depending on the stress invariants and a set of material
parameters. A new class of hardening laws is formulated in order
to describe a smooth transition from linear elastic to plastic
behaviour.

2.1. Incremental constitutive equations

The decomposition of the strain into the elastic (�e) and plastic
(�p) parts as

� ¼ �e þ �p ð1Þ

yields the incremental elastic strain in the form

_�e ¼ _�� _�p: ð2Þ

The ‘accumulated plastic strain’ is defined as follows:

pa ¼
Z t

0
j _�pjds; ð3Þ

where t is the time-like variable governing the loading increments.
Introducing the flow rule

_�p ¼ _kP; ð4Þ

where P is the gradient of the plastic potential, we obtain that the
rate of the accumulated plastic strain is proportional to the plastic
multiplier ( _k P 0) as

_pa ¼ _kjPj: ð5Þ

A substitution of Eqs. (2) and (4) into the incremental elastic consti-
tutive equation relating the increment of stress _r to the increment
of elastic strain _�e through a fourth-order elastic tensor E as _r ¼ E _�e,
yields

_r ¼ E _�� _kEP: ð6Þ

Note that, for simplicity, reference is made to isotropic elasticity, so
that the elastic tensor E is defined in terms of elastic modulus E and
Poisson’s ratio m.

During plastic loading, the stress point must satisfy the yield
condition Fðr;kÞ ¼ 0 at every time increment, so that the Prager
consistency can be written as

_F ¼ Q � _rþ @F
@k
� _k ¼ 0; ð7Þ

where Q ¼ @F=@r is the yield function gradient and k is the harden-
ing parameters vector.

By defining the hardening modulus Hðr;kÞ as

@F
@k
� _k ¼ � _kHðr;kÞ; ð8Þ

Eq. (7) can be rewritten in the form

Q � _r� _kH ¼ 0 ð9Þ

Further, the plastic multiplier can be obtained from Eqs. (6) and (9)

_k ¼ Q � E _�
H þ Q � EP

: ð10Þ

Finally, a substitution of Eqs. (10) into (6) yields the elasto-plastic
constitutive equations in the rate form

_r ¼ E _�� Q � E _�
H þ Q � EP

EP; ð11Þ

where, for simplicity, the associative flow rule P ¼ Q , will be
adopted in the sequel.

2.2. The BP yield surface

The following stress invariants are used in the definition of the
BP yield function [4]

p ¼ � trr
3
; q ¼

ffiffiffiffiffiffiffi
3J2

p
; h ¼ 1

3
cos�1 3

ffiffiffi
3
p

2
J3

J3=2
2

 !
; ð12Þ

where h 2 ½0;p=3� is the Lode’s angle and

J2 ¼
1
2

tr S2; J3 ¼
1
3

tr S3; S ¼ r� trr
3

I; ð13Þ

in which S is the deviatoric stress and I is the identity tensor.
The seven-parameters BP yield function F [4] is defined as

FðrÞ ¼ f ðpÞ þ q
gðhÞ ; ð14Þ

in which the pressure-sensitivity is described through the ‘meridian
function’

f ðpÞ ¼ �Mpc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ c
pc þ c

� pþ c
pc þ c

� �m� �
2ð1� aÞ pþ c

pc þ c
þ a

� �s
;

if
pþ c
pc þ c

2 ½0;1�; ð15Þ

and f ðpÞ ¼ þ1; if ðpþ cÞ=ðpc þ cÞ R ½0;1�. The Lode-dependence of
yielding is described by the ‘deviatoric function’ (proposed by [12]
and independently by [4])

gðhÞ ¼ 1
cos½b p

6 � 1
3 arccosðc cos 3hÞ�

: ð16Þ

The seven, non-negative material parameters

M > 0; pc > 0; c P 0; 0 < a < 2; m > 1; 0 6 b 6 2;
0 6 c < 1

define the shape of the associated yield surface. In particular, M
controls the pressure-sensitivity, pc and c are the yield strengths un-
der ideal isotropic compression and tension, respectively. Parame-
ters a and m define the distortion of the meridian section, while b
and c model the shape of the deviatoric section.

2.3. An infinite class of hardening laws

In order to simulate the nonlinear hardening of concrete,
the following class of hardening rules in incremental form is
proposed:

_pc ¼
k1

ð1þ dpaÞn
_pa; ð17Þ

_c ¼ X _pc; ð18Þ

where four material parameters have been introduced:
k1 > 0; d P 0; n > 0; and 0 < X < 1.

A substitution of the flow rule (4) into (17) and (18) yields

_pc ¼ _k
k1

ð1þ dpaÞn
jPj; ð19Þ

_c ¼ _k
Xk1

ð1þ dpaÞn
jPj: ð20Þ

Eqs. (17) and (18) can be integrated in order to obtain the hardening
laws in finite form as follows
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