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a b s t r a c t

A numerical study was used to study the response of a normal-strength concrete (NSC) column that was
not design for blast resistance subjected to four levels of idealized blast loads. Then, to compare the
behavior of the NSC column with a column made with ultra high performance fiber reinforced concrete
(UHPFRC) that had the same dimensions and reinforcing details as the NSC column and subjected to the
same loading conditions. The boundary conditions and the level of compressive axial load due to gravity
were also considered in the analyses. The behavioral comparisons were made both in the time-history
domain, as well as in the load–impulse (P–I) domain. Comparisons, observations, and conclusions are
presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

More than three decades of research on innovative concrete
materials such as DUCTAL [1], CEMTECmultiscale [2], CeraCem [3],
COR-TUF [4], and others have resulted in concrete materials with
compressive strengths in excess of 160 MPa. These cementitious
composites, with the incorporation of steel fibers in the mix, form
a new class of concrete that is termed ultra-high-performance fi-
ber-reinforced concrete (UHPFRC) that offers increased strength,
ductility, and durability compared to normal- and high-perfor-
mance concrete materials. These improved properties in the mate-
rial level are expected to translate to improved performance and
resilience in the overall structural level, even when the structure
is subjected to highly impulsive loads such as blast or impact.
There have been some recent studies on the response of
UHPFRC-based structural beams and slabs under severe dynamic
loads [5–11]. However, we have a very limited knowledge base
on the behavior of UHPFRC columns under such extreme loads.
Considering that columns are essential to the survival of a struc-
ture after a blast, and that abrupt failure of such structural compo-
nents may lead to partial or complete progressive collapse,
investigating if using UHPFRC instead of normal strength concrete
(NSC) for columns is important. Understanding how much
improvement can be achieved by using UHPFRC instead of (NSC)

in columns that were not designed for blast loads could lead to
more options for enhancing a building’s blast protection features.

This study was carried out numerically by investigating the
nonlinear response characteristics of NSC and UHPFRC columns
under blast loads, assuming that the dimensions, support condi-
tions, and reinforcing details are the same for both types of col-
umns. The investigation quantified the difference in structural
performance by comparing the columns’ responses in both the
time domain and in the load–impulse domain (P–I), as will be ex-
plained later, herein. The strength and ductility of a column can be
strongly influenced by the level of compressive axial force present
on the column and by the boundary conditions. Therefore, the level
of axial compressive force from gravity loads and the boundary
conditions were also considered as variables, in addition to trans-
verse blast loads from charges at various distances. This study aims
to expand the previous work by the authors on the blast response
of reinforced concrete (RC) columns [12] to include UHPFRC col-
umns by using a UHPFRC-specific material model and by drawing
contrasts between the behavioral differences.

2. Numerical approach

This study was conducted using a single-degree-of-freedom
(SDOF)-based approach. Although the use of an SDOF-based ap-
proach may seem simplistic compared to using a continuum-based
finite element approach, using SDOF-based solutions is common
practice in the blast assessment of structural components. The
SDOF model was validated using detailed finite element analysis
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and with available experimental data. Once validated, the SDOF ap-
proach was later used to obtain the P–I diagrams of the NSC and
UHPFRC columns.

The SDOF analyses were conducted using the Dynamic Struc-
tural Analysis Suite (DSAS), which is an advanced structural analy-
sis program that couples a nonlinear resistance function obtained
using a displacement-controlled finite element solver and struc-
tural elements with a fast-running SDOF engine [13–15]. DSAS
uses a layered/fiber approach and strain compatibility to obtain
the moment–curvature relationship of the section of the beam or
column under investigation, and then uses a displacement-con-
trolled finite element solver based on Crisfield’s arc-length method
[16] with nonlinear beam/column elements to obtain the resis-
tance, equivalent load, and equivalent mass functions. The process
used for establishing equivalent SDOF system properties based on
the real system properties is described below.

As a result of the SDOF approximation, the load function must
be separable into time-dependent and spatial components, as
shown in Eq. (1):

ptðxÞ ¼ kt �pðxÞ ð1Þ

where pt(x) is the load function; kt the time-dependent portion of
the load function, and �pðxÞ is the spatial distribution of the load.

Fig. 1 shows a schematic of the structural component and vari-
ous parameters for which the equivalent SDOF parameters will be
defined. Instead of using elastic, elastic–plastic, and plastic dis-
placement profiles to determine load and mass factors, as sug-
gested by Biggs [17], DSAS uses a displacement-controlled finite
element solver to determine the displacement field for each load/
displacement increment i. Once the displacement field at load
increment i is determined, the shape function for the load stage
is determined from Eq. (2) by dividing the entire displacement field
by the reference displacement at a preselected location along the
span (i.e., midspan) as defined in Eq. (3):

uiðxÞ ¼ uiðxÞ
ui

m
ð2Þ

ui
m ¼ ui L

2

� �
ð3Þ

in which ui(x) is the displacement field at load increment i; ui
m the ref-

erence displacement at load increment i (i.e., midspan displacement),
and ui(x) is the normalized shape function at load increment i.

Once the load distribution, shape function, and reference dis-
placement values are obtained corresponding to all the load incre-
ments, the equivalent load is determined from Eq. (4), as suggested
by Biggs [17]:

Fi
e ¼

Z L

0
piðxÞ �uiðxÞ � dx ð4Þ

in which pi(x) is the load distribution on the real system at load
increment i; Fi

e the equivalent load on the SDOF system at load
increment i, and L is the span length of the member.

Eq. (4) ensures that the strain energies of the real and the equiv-
alent SDOF systems are identical. In a similar fashion, by equating
the kinetic energies of the real and the equivalent SDOF systems,
the equivalent mass function at a given load increment i is deter-
mined from:

Mi
e ¼

Z L

0
mðxÞ � ½uiðxÞ�2 � dx ð5Þ

in which m(x) is the mass distribution on the real system and Mi
e is

the equivalent mass of the SDOF system at load increment i.
The determination of equivalent load and mass functions is

achieved using nonlinear static analysis. As a consequence, the
superscript t, indicating time step in Eq. (1) and Fig. 1, is replaced
with i, indicating load/displacement increment step in Eqs. (2)–(5).

Once the static analysis is completed and all of the equivalent
SDOF system parameters are determined as a function of the refer-
ence displacement, the Newmark-Beta method [18] is used to
solve the dynamic equilibrium equation shown below:

Ft
e ¼ Mt

e
€ut

m þ C _ut
m þ Rt

e ð6Þ

in which Rt
e ¼ Reðut

mÞ is the equivalent resistance at time t,
Mt

e ¼ Meðut
mÞ the equivalent mass at time t, Ft

e ¼
Feðut

mÞ
kðut

mÞ
kt the equiv-

alent load at time t, €ut
m; _ut

m;u
t
m the displacement, velocity, and

acceleration at the reference location at time t (i.e., midspan),
and C s the damping coefficient.

A P–I diagram is a specialized form of response spectrum that
relates the peak load (e.g., peak reflected pressure) and impulse
generated by a certain loading scenario to damage level on a spe-
cific component. The process for obtaining the P–I diagram numer-
ically is described in detail in Krauthammer et al. [19], where the
SDOF analysis engine is used to carry out bisection iterations to
find the threshold curve. This approach obviously requires a signif-
icant number of SDOF analyses to obtain a single P–I curve for a
specific load shape (e.g., a triangular pulse) and is consequently
computationally very time intensive. The loading scenario might
be a triangular or exponential function to represent idealized blast
pressure time-history and the damage level might be a specific dis-
placement, acceleration, support rotation level, or a certain failure
mode (e.g., flexure with or without diagonal shear, direct shear,
etc.). Although the procedure described above was used to conduct
a single time-history analysis, it can also be incorporated into a
search algorithm to obtain the P–I threshold curve, as shown in
Fig. 2. The search algorithm relies on selecting an origin pressure
and impulse combination that corresponds to a specific structural
response threshold (Ip, Pp), as shown in Fig. 2(a). Instead of
determining the origin point by trial and error, one can use the
expressions for impulsive and quasi-static asymptotes [13], shown
in Eqs. (7) and (8), respectively, to estimate the location of the
asymptotes and then use these values to select an origin point that
is located toward the right of the impulsive asymptote and above
the quasi-static asymptote.

Impulsive domain : Kinetic Energy ¼ Strain Energy ð7ÞFig. 1. The real structural member.
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