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a b s t r a c t

A theoretical model based on an artificial neural network (ANN) was presented for predicting shear
strength of slender fiber reinforced polymer (FRP) reinforced concrete flexural members without stir-
rups. The model takes into account the effects of the effective depth, shear span-to-depth ratio, mod-
ulus of elasticity and ratio of the FRP flexural reinforcement and compressive concrete strength on
shear strength. Comparisons between the predicted values and 106 test data showed that the devel-
oped ANN model resulted in improved statistical parameters with better accuracy than other existing
equations. From the 2k experiment, the influence of parameters was identified in the order of effective
depth, axial rigidity of FRP flexural reinforcement, shear span-to-depth ratio and compressive concrete
strength. Using the ANN model and based on the results of the 2k experiment, predictive formulas for
shear strength of slender FRP-reinforced concrete beam without stirrups were developed for practical
applications. These formulas were able to predict the shear strength better than other existing
equations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced polymers (FRPs) have several advantages over
steel, including being non-corrosive and non-magnetic and having
higher tensile strength. They are also lighter than steel, which en-
ables easier handling and reduces self-weight of structures. How-
ever, they also have the disadvantages of linear elastic tensile
behavior that is prone to rupture with lower ductility, lower mod-
ulus of elasticity and lower shear strength than steel.

Concrete flexural members that are reinforced with longitudi-
nal steel bars for flexure without stirrups resist the applied shear
stresses via a number of mechanisms [1–4], including: (1) shear
resistance of uncracked concrete, (2) interlocking action of aggre-
gate, (3) dowel action of the longitudinal reinforcement, (4) arch
action, and (5) residual tensile stresses across cracks. Although
the basic shear resistance mechanism may be similar to that of
steel reinforced concrete members, the distinctive material prop-
erty of FRPs could significantly alter the relative contribution of
each mechanism to the total shear resistance [5–8].

In a beam longitudinally reinforced with less stiff FRP bars, flex-
ural cracks could penetrate deeper into the section and wider
cracks will form compared to those in a beam reinforced with an
equal amount of longitudinal steel bars with higher stiffness.

Deeper flexural cracks with FRP bars would decrease the depth of
the compression zone, thereby reducing the contribution of the un-
cracked concrete to the shear strength [9]. The development of
wider and deeper cracks also reduces the resistance by aggregate
interlock and the residual tension in cracked concrete. The dowel
resistance of longitudinal bars that limit the shearing displacement
along the cracks was considered negligible for FRP bars due to their
low transverse modulus and smaller size together with relatively
wider cracks [1,8].

For the flexural members with a shear span-to-depth ratio a/d
of approximately less than 2.5, the arch action occurs [1], in which
a and d are the shear span and effective depth of a beam, respec-
tively. Compared to the amount of research on the arch actions
for flexural members that are longitudinally reinforced with steel
bars, a limited number of studies were reported for the beams with
FRP bars [10]. For the slender flexural members with a/d greater
than 2.5, the shear strength of flexural members with longitudinal
steel bars is a function of a/d as well [11–13]. For these members,
a/d represents the interacting effect of the moment (Mf) and shear
(Vf) at a section or the quantity (Vf � d/Mf)�1 on the shear strength of
that section. El-Sayed et al. [14] reported that the experimental
shear capacity of the test beams increased as the concrete com-
pressive strength (f 0c) increased.

Various design equations have been developed to determine
the shear strength of FRP-reinforced concrete flexural members
without stirrups [2,6–8,15–21]. Their accuracy, however, seems
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limited as these equations were empirically developed using
predefined forms and with the test data mainly generated for a
limited number of influential parameters.

An artificial neural network (ANN) is a generalized mathe-
matical model of human neural biology. The main feature of
an ANN is its ability to classify the data and determine the
relationships between the input values (or parameters affecting
shear strength) and their outcome (or shear strength). This
feature enables an ANN to generalize the effect of each
parameter on the shear strength, even if large portions of the
data were generated for the purpose of identifying the effects
of a limited number of influential parameters. An ANN does
not require a predetermined form of equation as in the case of
the most empirical approaches. In this study, the development
of an ANN model is presented to predict the shear strength of
slender FRP-reinforced concrete flexural members without stir-
rups (Vcf).

2. Design equations for shear strength of FRP-reinforced
concrete beams without stirrups

2.1. Design equations

The existing equations for Vcf are presented in Eqs. (1)–(3), (4a),
(4b), (5a), (5b), (6)–(11). Significant gaps exist in selecting the main
parameters and their effects on Vcf because these equations have
been empirically derived. In the following equations, bw = member
web width; d = member effective depth; Ec, Es and Ef = moduli of
elasticity for concrete, steel and FRP, respectively; fcu = cube com-
pressive strength of concrete; n = Ef/Ec; b1 = rectangular compres-
sive stress block parameter for flexure; and qf = flexural FRP
reinforcement ratio.
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JSCE shear design method [20]:

Vcf ¼ bdbqbnfvcdbwd=cb ð6Þ

where
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cb = 1.0 for the present day.

Michaluk et al. [7]:

Vcf ¼
Ef

Es

1
6

ffiffiffiffi
f 0c

q
bwd

� �
ð7Þ

Deitz et al. [6]:
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Razaqpur and Isgor [8]:
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2.2. Limitations of the existing equations

Table 1 summarizes the parameters included in Eqs. (1)–(3),
(4a), (4b), (5a), (5b), (6)–(11). The error metrics in terms of the
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