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a b s t r a c t

A new shear locking-free spatial beam element with general closed thin-walled cross-section is presented
in this paper. Based on the Timoshenko beam theory and Benscoter thin-walled beam theory, the pro-
posed element considers the effects of shear deformation, coupled flexure and torsion, and warping shear
stress. The shear locking is avoided by introducing an interior node to the element and adopting
two-node Hermitian interpolation functions for transverse displacements and torsional rotation and
three-node Lagrangian interpolation functions for the flexural rotations and warping function. Several
examples are analyzed to validate the accuracy and convergent efficiency of the proposed beam element,
and the results are compared with theoretical and numerical solutions. The comparisons demonstrate
that the proposed element is applicable to the analysis of a thin-walled beam with an arbitrary closed
cross-section.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Development of thin-walled beam elements has aroused inten-
sive interest from many researchers in the past few decades. Finite
element modeling of the flexural problems was usually based on
the theory of Bernoulli–Euler beam, and much attention has been
paid to the influence of shear deformation on the behavior of
thin-walled beams [1] involving problems with bending [2], re-
strained torsion [3–6] and buckling [7,8].

On the basis of the assumption that transverse shear strain
keeps constant along the height of cross-section, the Timoshenko
beam theory [9] includes the influence of shear deformation. Its
application in the finite element area, termed as the Timoshenko
beam element, usually features C0 type continuity [10–12]. When
transverse displacements and flexural rotations are linearly inter-
polated, the Timoshenko beam element will behave very stiff with
the large length-to-height ratio, which is known as the shear lock-
ing [13]. The locking results from additional spurious constraints
[14], produced by the inconsistency of the interpolation used for
transverse displacements and flexural rotations [14]. To avoid the
locking, several approaches have been proposed in the literature,

including the selective/reduced integration [14–18], assumed
strain method [19–22], high order shear theory [13,23], Modified
Hermitian shape functions [24–27], Consistent interpolation
[13,28], finite element formulation based on curvature [29,30], hy-
brid/mixed formulation [31–35] and mesh-free/methless method
[36–39]. In fact, the curvature-based element can be regarded as
a model in which stress is interpolated, thus belonging to the cate-
gory of hybrid/mixed elements [30]. In this paper, only the dis-
placement-based finite element models are mainly concerned and
the hybrid/mixed models or meshfree models will not receive any
attention. For the selective/reduced integration, it means that the
shear stiffness is integrated with fewer integration points than nec-
essary to improve the performance of an element [14]. Its severe
drawback is that an element adopting this approach suffers from
instabilities generated by the hourglass modes [18]. For assumed
strain method, strains are actually imposed under the discrete form
and the relationship between displacements and shear strains is
modified [18]. Actually, the B-bar methods proposed by Hughes
[40] and Simo and Hughes [41] and the Discrete Shear Gap (DSG)
approach proposed by Bletzinger et al. [42] and Koschnick et al.
[43] can also be classified as the category, in which it is difficult
and problematic that feasible sampling points are appropriately
chosen [18]. Reddy [13] and Murthy et al. [23] proposed the high or-
der shear theory, in which the transverse shear strain is represented
as a quadratic function along the height of a beam’s cross-section to
alleviate shear locking. As far as thin-walled beams are concerned,
they usually have complex forms of cross-section and approaches
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based on the high order shear theory seem to be too complicated to
be applied. For the approach of modified Hermitian shape functions
called Interdependent Interpolation Element (IIE) by Reddy [13],
two constants are introduced in the Hermitian interpolation poly-
nomials for the transverse displacements to include the shear
deformation. These constants will vanish when the beam length
is infinitely long and shear locking can be avoided. But when
warping shear stress is included, this approach is inapplicable to
thin-walled beams with closed cross-section, as will be discussed
specially in the fourth paragraph in this section. For consistent
interpolation, polynomials of degree m for transverse displace-
ments and polynomials of degree m-1 for flexural rotations are used
and the degrees of freedom (DOFs) of the middle node are generally
eliminated [13]. To date, the approach is adopted only to avoid
transverse shear locking and has not been found in the literature
to be applied to thin-walled beams to include the influence of warp-
ing shear stress (to be discussed further in the fourth paragraph).

As is well known, a typical characteristic of a thin-walled beam
is that the flexural and torsional deformations would be coupled
when transverse load is applied along the asymmetric principal
axis of its cross-section [1]. Gunnlaugsson and Pedersen [44] have
contributed a lot to the development of the coupled flexure and
torsion in the finite element formulation [45]. Hu et al. [45] and
Kim and Kim [1], according to the kinematical description of a gen-
eral thin-walled cross-section under load, formulated the trans-
verse displacement including the flexural and torsional coupling.
Many literatures [46–49] in the last decade can be found on the
coupled torsional–flexural vibration of thin-walled beams.

Another common concern with a thin-walled beam is the
non-uniform torsion (restrained torsion), and the associated linear
elastic theory was developed by Vlasov [50] half a century ago.
Warping shear stress is produced in the non-uniform torsion and
it influences the torsional behavior of a thin-walled beam espe-
cially when the cross-section is closed. Benscoter [51] improved
the Vlasov’s theory and proposed a new theoretical frame for
closed thin-walled beams, on the basis of which some methods
were developed by a few researchers to include the effect of
warping shear stress in the finite element formulation. These ap-
proaches can be categorized into two groups as (1) Homogeneous
solutions of governing differential equations being adopted as the
element interpolation functions [45], which results in a very
complicated form of the element stiffness matrix. (2) Modified
Hermitian shape function [27], in which a constant is added to
the Hermitian interpolation polynomial for the torsional rotation.
However, the constant is derived from a thin-walled beam with
an open cross-section and this approach is not applicable to a
closed thin-walled beam. For closed thin-walled beams, it is neces-
sary that a new approach be presented to include the effect of
warping shear stress. In this paper, based on the concept of consis-
tent interpolation for transverse displacements and flexural rota-
tions to avoid transverse shear locking as discussed in the 2nd
paragraph, the torsional rotation and warping function are consis-
tently interpolated to include the influence of warping shear stress.

Considering that distribution of bending rotations or warping
function along the beam length is non-linear when a thin-walled
beam is under non-uniform bend or torsion, an interior node is in-
tended to be added to a thin-walled beam element to improve the
analytical precision [52]. In 1970s, interior nodes were initially
introduced to the two-dimensional incompatible elements pro-
posed by Wilson et al. [53] and Herrmann [54] for improvements
in accuracy. Celia and Gray [55] concluded that interior nodes posi-
tioned such that they do not affect the Jacobian of the coordinate
transformation as well as side nodes at the same relative distance
from corner nodes in both local and global space provided im-
proved accuracy. Gupta et al. [56] adopted a shell element interpo-
lated by cubic B-splines in the analysis, in which DOFs at the

interior nodes of the meridian are two nodal displacements while
DOFs at the edge nodes include two displacements and the rotation
of the meridian. Houmat [57] presented a four-node Timoshenko
beam element (with two end nodes and two interior nodes) for
the vibration analysis, whose displacement fields were described
by a cubic polynomial and a variable number of trigonometric sine
terms. Malsch and Dasgupta [58] constructed new test functions
which made it possible that the interior nodes could be located
at any desired position of the element. Ho and Yeh [52] derived a
family of enriched elements to improve their accuracy by introduc-
ing bubble functions and interior nodes of Lagrange elements.
Krishnan [59] developed an efficient beam element with four inte-
rior nodes, which is composed of three fiber segments and two
elastic segments to capture the overall features of the elastic and
inelastic responses of slender columns and braces. Tsai [60] pro-
posed a floating interior-node scheme to eliminate the null modes
of flexural vibration in the Timoshenko frames. To date, beam ele-
ments with interior nodes, however, have not yet been found in the
documents to be applied to the analysis of thin-walled members.

In this paper, a shear-locking free spatial beam element with
closed cross-section is proposed based on the authors’ existing re-
search work [61–64] on the open thin-walled beams. The influence
of flexural and torsional coupling is considered on the basis of the
kinematic description of a general cross-section and transverse dis-
placements and bending rotations are consistently interpolated to
avoid shear locking. To include the influence of warping shear
stress, the consistent interpolation is also adopted in the discreti-
zation of the torsional rotation and warping function. With the
view of improvement in the element accuracy, an interior node is
introduced to the thin-walled beam element and cubic Hermitian
interpolation polynomials are adopted for transverse displace-
ments and torsional rotation while quadratic Lagrangian interpola-
tion polynomials are adopted for bending rotations and warping
function. It can be found that the consistent interpolation approach
adopted in this paper is different from and more accurate than that
in the documents [13,28], in which only quadratic and linear
Lagrangian interpolation polynomials are employed for transverse
displacements and bending rotations, respectively. The nodal dis-
placement vector of the proposed element is divided into two com-
ponents. One is the external displacement vector (Eq. (38)) related
to the inter-element displacement compatibility and the other is
associated with the internal DOFs that are unrelated to the dis-
placement compatibility (Eq. (39)). It should be noted that the
internal DOFs in the proposed beam element are different from
those in the documents [52–60] including only DOFs of the interior
nodes. They consist of two parts. One is composed of DOFs corre-
sponding to the flexural rotations and warping function of the inte-
rior node and the other is composed of the first derivative of the
transverse displacements and the torsional rotation at both end
nodes (please see Eq. (39)). The element stiffness matrix is derived
according to the classical variational principle and the internal
DOFs of the element are condensed in the equilibrium equations
to reduce the number of the total DOFs. Several examples are ana-
lyzed with the proposed element, and results are compared with
theoretical and numerical solutions to verify the accuracy and con-
vergence property of the proposed finite beam element.

In the following sections, the basic assumption, strains and
stress resultants, shape function matrix, element stiffness matrix,
transformation matrix on the proposed finite element, the numer-
ical examples and conclusions will be discussed.

2. Assumptions

The present research is confined to the analysis of a thin-walled
straight beam with closed cross-section. The material is elastic in
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