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a b s t r a c t

In this paper, we investigate the performance of reduced order modeling of dynamic structural systems
based on the proper orthogonal decomposition (POD) technique. Singular value decomposition of the so-
called snapshot matrix is adopted to generate the reduced space, onto which the system equations of
motion are projected to speedup the computations.

To get insights into the achievable speedup and the capability of POD to provide an input-independent
reduced model, we consider the 39-story Pirelli tower in Milan-Italy. First, we assume that a shear model
of the building is excited by the May 18-1940, Mw 7.1, El Centro earthquake, and generate the data
ensemble necessary to build the reduced model. Second, we assess the local and global accuracies of
the same reduced model in tracking the dynamics of the building, if excited by the May 6-1976, Mw

6.4, Friuli earthquake and by the January 17-1995, Mw 6.8, Kobe earthquake, which differ from the El Cen-
tro one in terms of excited vibration frequencies. We show that POD allows to attain a speedup approach-
ing 250, when the reduced order model is asked to feature a high accuracy; moreover, POD tends to
outperform a standard modal analysis at increasing number of modes retained in the model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate, low-dimensional reduced order models are of primary
importance for large scale structures [1,2]. To speedup prognostic
analyses forecasting the effects of extreme loadings (like, e.g.,
earthquakes or low-velocity impacts) leading to local or global fail-
ure mechanisms [3–5], or to enhance the engine of structural
health monitoring procedures (defined as enabling technologies of
a value chain in [6]), fast computational tools are required to pro-
vide the response to the external loads of linear comparison models
of the structures [7–10].

If nonlinearities are heavily affecting the structural response,
multi-scale [11,12] and domain-decomposition [13] approaches
need to be resorted to reduce the computational burden of numer-
ical simulations, still keeping a target accuracy in critical regions
where localized failures are expected to take place [3,5]. With a
slightly different target, we assume here that nonlinearities are
well confined in small portions of a structure, whereas the remain-
ing part behaves linearly. We therefore focus on this latter sub-
structure and investigate an approach to reduce the order of
dynamically excited systems, which is based on the proper orthog-
onal decomposition (POD) methodology [14–16]. Even if this topic

is not addressed in this paper, we also assume that local failure
mechanisms causing drifts in the structural response, can be
simultaneously assessed through ad-hoc structural health moni-
toring systems.

Instead of being routed by physical reasons (e.g. coarse graining
away from the regions behaving nonlinearly), POD turns out to be
governed by purely mathematical tools. POD has been developed
independently in different research fields with different names,
like, e.g. principal component analysis [17], singular value decom-
position [18], Karhunen-Loeve decomposition [19,20]; it was
proved that all these algorithms are different variants of POD, see
[21].

POD automatically looks for a dependence structure among the
degrees of freedom (DOFs) of a space discretized system, which are
normally assumed to be independent. The goal is achieved through
a set of ordered orthonormal bases, or proper orthogonal modes,
POMs (to be distinguished from the standard vibration modes of
the structure). They are obtained through a singular value decom-
position of the so-called snapshot matrix [22], which collects snap-
shots of the structural response to the loading during an initial
stage of training of the analysis. By way of an energy-based accu-
racy index (to be discussed in Section 3), POD also provides a ratio-
nale to define the number of POMs to be retained in the reduced
order model (ROM). Some authors recognized a few weaknesses
in such methodology, see e.g. [23–25]: the training of POD requires
the full model to be run in the initial stage of computations, hence
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the speedup of the analysis is detrimentally affected; the duration
of the training stage cannot be a priori defined, since it can be
judged only through convergence (granted by the linearity of the
analyzed systems) of the POD subspace, wherein the ROM is there-
after allowed to evolve; since training is obtained under specific
loading conditions, it is not simple to assure that the accuracy of
the ROM does not change under different loadings. Moreover, there
is no consensus on how to attack nonlinear problems with the
same procedure, or similar ones [9,26,27]; an approach, obtained
by coupling POD for a linearized model of the structure and Kal-
man filter for adapting on-the-fly the ROM when nonlinearities
come into play, was proposed in [28]. This issue in not discussed
any further here below, where focus is on the accuracy, efficiency
and robustness features of POD-based ROMs for dynamics struc-
tural systems.

To assess the computational gain offered by POD, we consider
the case of tall buildings excited by earthquakes. In the study we
handle a numerical model of a 39-story building located in Mi-
lan-Italy, the Pirelli tower; under horizontal actions, we adopt for
it a shear-type deformation model. Even if an automatic update
of POMs has not been adopted here, we show that a heuristic ap-
proach, which consists in a training stage covering a fundamental
period of vibration of the building, allows to attain convergence
of the shape of the POMs themselves. POD effectively scales down
the computational costs by up to two-three orders of magnitude,
and provides at least the same overall accuracy of modal analy-
sis-based ROMs; by increasing the required energy-based accuracy
of the ROM, POD progressively outperforms modal analysis. We
also show that ROMs of the building at varying target accuracy,
all built with snapshots of the response to the May 18-1940 El Cen-
tro earthquake, can be adopted also under different loading condi-
tions, like e.g. earthquake records featuring different frequency
contents. Through the reported critical analysis, we therefore pro-
vide a rational theoretical frame for real-time monitoring of the
health of structures undergoing localized damage, as shown in
[28].

The remainder of the paper is organized as follows. Section 2
provides a few details about the explicit time integration scheme
adopted to advance in time the solution of the structural equations
of motion; a discussion on how the relevant conditional algorith-
mic stability is managed in the full and reduced order analyses is
presented as well. Section 3 gathers fundamentals of POD and sin-
gular value decomposition, with an explanation on how accuracy
of the reduced model can be a priori set. To assess the quality of
the solutions provided by POD, even through comparison with
modal analysis, in Section 4 results are shown for the mentioned
39-story building excited by three different earthquakes: the
May 18-1940, Mw 7.1, El Centro one; the May 6-1976, Mw 6.4, Friuli
one; and the January 17-1995, Mw 6.8, Kobe one. Finally, Section 5
presents some concluding remarks on the present work, and possi-
ble future activities to extend the applicability of the studied meth-
odology to the health monitoring of real structures.

2. Structural dynamics and time integration

Let the dynamic response of the structural system to the exter-
nal loads be described by the following linear equations of motion:

M€uðtÞ þ D _uðtÞ þ KuðtÞ ¼ FðtÞ ð1Þ

where M is the mass matrix; D is the viscous damping matrix; K is
the stiffness matrix; F is the time-dependent external force vector;
€u; _u and u are the time-varying vectors of system accelerations,
velocities and displacements, respectively. As for a shear model of
buildings (like the one to be adopted in Section 4), these vectors

gather the lateral displacements, velocities and accelerations of
the storys.

Eq. (1) is usually arrived at once the structural system has been
space discretized (e.g. through finite elements), or once assumptions
concerning the behavior of the building (e.g. shear-type deforma-
tion) have been taken into account. This preliminary stage of the
analysis can affect the sparsity of matrices in (1), and can therefore
have an impact on the speedup obtained through POD as well.

The solution of the vectorial differential Eq. (1) is here advanced
in time by making use of the Newmark explicit integration scheme.
We subdivide the time interval of interest according to
½t0 tN� ¼

SN�1
i¼0 ½ti tiþ1�;N being the number of time steps featuring

constant size Dt = ti+1 � ti; within [ti ti+1], the time marching algo-
rithm can be partitioned according to [29]:

� predictor stage:

~uiþ1 ¼ ui þ Dt _ui þ Dt2 1
2
� b

� �
€ui

_~uiþ1 ¼ _ui þ Dtð1� cÞ€ui

ð2Þ

� explicit integrator stage:

€uiþ1 ¼M�1ðF iþ1 � D _~uiþ1 � K ~uiþ1Þ ð3Þ

� corrector stage:

uiþ1 ¼ ~uiþ1 þ Dt2b€uiþ1

_uiþ1 ¼ _~uiþ1 þ Dtc€uiþ1

ð4Þ

The explicit integrator (3) allows to easily extend the present re-
sults to the nonlinear regime, if the elastic term Ku in (1) is replaced
by a possibly path- and history-dependent internal force vector
term F⁄(u) (see, e.g. [30]).

To provide exemplary results concerning the performance of
POD, in the simulations here collected we have adopted b = 0 and
c = 0.5, hence resorting to the central difference algorithm; similar
results can be obviously obtained with different values of the algo-
rithmic parameters b and c.

Since the above algorithm is conditionally stable, Dt needs to be
upper bounded by [29,31]:

Dtcr ¼ Tn

p
ð5Þ

where Tn is the period of vibration associated with the highest oscil-
lation frequency in the numerical model. It may result that the crit-
ical time step size can be increased in the ROM, since high
frequency oscillations are automatically filtered out of the relevant
numerical solution. Here we purposely avoid to take advantage of
this effect, and assume DtPOD = Dt; hence, the provided speedups
are linked to the reduction of the number of handled DOFs only,
and need to be considered as a lower bound on the achievable ones.
Additional results, highlighting also the effects of DtPOD > Dt (still
assuring DtPOD < Dtcr

POD in the ROM) on the costs and accuracy of
the solution, will be reported in a future work specifically focused
on a model problem (see also [32]).

3. Fundamentals of proper orthogonal decomposition for
dynamic structural systems

The aim of reduced order modeling is to automatically find a
solution to the following two conflicting requirements: create the
smallest possible numerical model of the original dynamic system;
preserve accuracy in the description of the system behavior. Stan-
dard techniques try to extract fundamental features from the
dynamic model, so as the governing equations can be thereafter
projected onto a reduced state space, or subspace.
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