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a b s t r a c t

The harmonic compound finite strip method has been applied to linear transient vibration analysis of
stiffened plates. In this method, eigenfunctions of Bernoulli-Euler beam have been used as the displace-
ment interpolation functions in longitudinal direction, while finite element shape functions have been
used for it in transverse direction. The Kirchhoff–Love thin plate theory has been used and the equation
of motion of structure is derived from Lagrange’s equation of motion. The governing equations have been
solved by the mode superposition where step-by-step procedure has been used for the solution of modal
equation. The stiffener has been modeled so that it may lie anywhere within the plate strip which helps
to increase the flexibility in mesh generation. The formulation is applicable for rectangular plates stiff-
ened with longitudinal and transverse beams and supported on columns. The proposed method is vali-
dated through several examples. The strips with free end give erroneous results for non-zero Poisson’s
ratio.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Plates stiffened by beams have broad usage in contemporary
engineering structures, such as: buildings, bridges, ships, and air-
crafts. In these applications stiffened plates are regularly subjected
to static and time varying loads. Hence, analysis of stiffened plates
under different loading conditions is area of immense interest to
researches.

Stiffening of the plate is used to increase its load carrying capac-
ity and to keep structure light weight which makes it cost effective.
Because of their high stiffness/mass ratio, these structures are
especially vulnerable to dynamic loading.

The analytical solution of the stiffened plates under a time vary-
ing loads of arbitrary nature is very difficult, if not impossible.
Many numerical methods are developed for analysis of these struc-
tures, namely: the finite element method (FEM), the finite strip
method (FSM), the boundary element method, the dynamic relax-
ation method, etc. The FEM is undoubtedly the most versatile and
accurate one. Brief review of developments in the analysis of stiff-
ened plates is given by Sapountzakis [1]. It seems that, due to its
complexity, a complete understanding of all aspects of stiffened
plates behavior is yet to be realized.

In this paper one variation of the well-established FSM is
applied. The FSM has been used to solve numerous problems in
continuum mechanics [2–4]. This method is semi-analytical finite
element procedure. In linear elastic analysis of plates it takes
advantage of the orthogonally properties of harmonic functions

in the stiffness and mass matrices formulation to yield a block
diagonal matrices. In this way two-dimensional problem is decom-
posed into several one-dimensional sub problems. Unfortunately,
the method suffers from a number of drawbacks like mixed bound-
ary conditions, continuous span, internal opening, interior sup-
ports and some similar features. These are mostly due to the
beam eigenfunctions used as a displacement interpolation function
along the longitudinal direction of the strip. Some authors used B-
spline functions [5–8] instead of beam eigenfunctions to incorpo-
rate stiffeners into arbitrary shaped plates for static and dynamic
analysis.

Nevertheless, by using the harmonic functions, Puckett and
Gutkowski [9] presented the compound strip method (CSM) for
rectangular, and Puckett and Lang [10] for curved plates. They have
shown that it is possible to model stiffened plates by direct stiff-
ness method using the FSM with beam eigenfunctions. The method
has been applied for free vibration analysis [11,12], statics of
bridges and folded plates [13,14], buckling [15] and vibration local-
ization [16].

The CSM presented here is well-suited for calculation of thin
rectangular bending plates with arbitrary support conditions. With
the CSM it is possible to include stiffness and mass contribution of
longitudinal beams, transverse beams and columns into plate.

Stiffened plates subjected to transverse loading suffer in-plane
stresses which implies use of in-plane degrees of freedom that
again complicates the calculation process. Fortunately, approxima-
tive linear elastic analysis can be made by taking into account only
out-of plane displacements. Basic idea of the CSM is, like in most
numerical methods, to get an economic solution with reasonable
accuracy.
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In this paper the CSM has been extended to linear elastic anal-
ysis of stiffened plates due to arbitrary immobile dynamic loading.

Extensive analysis has been done by comparing the CSM and
the FEM, with four examples provided here. Numerical example
of one stiffened plate subjected to dynamical load, as available in
literature, has been solved to validate the formulation. We clarified
one part of the CSM by showing that this method does not take into
account interconnection of beams. Also, well-known problem of
plates with free corner has been inspected and it showed that
the torsion cannot be adequately approximated with lower order
strip.

Results obtained by the proposed method are quite encourag-
ing, especially having in mind that the optimum design of stiffened
plate structures demands an effective computational procedure.
Simplicity of the CSM approach enables opportunity for wide para-
metric analysis of stiffened plates in search for optimal placement
of stiffeners.

2. Theory

2.1. The finite strip method

Kirchoff–Love thin plate theory implies that only three compo-
nents of strain exists in plate, and consequently only three compo-
nents of stress. In this theory only independent variable is
deflection of the plate’s middle plane – w(x,y).

Typical flat shell lower order (LO2) finite strip of length a, width
b and thickness t is presented in Fig. 1.

Displacement function is approximated with truncated series:

wðx; yÞ ¼
Xr

m¼1

wmðxÞYmðyÞ; ð1Þ

where r represents number of series terms used in analysis. Parts of
approximative function in x direction consist of well-known Hermi-
tian polynomials used as interpolation functions of Bernoulli–Euler
beam:
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where w0m, u0m, wbm, and ubm are unknown displacement parame-
ters of nodal lines for mth series term. If we introduce vector N con-
sisting of Hermitian polynomials N1, N2, N3, and N4:

NT ¼ N1 N2 N3 N4½ � ð3Þ

and vector of unknown displacement parameters of nodal lines for
mth series term

qT
m ¼ w0m u0m wbm ubm½ �; ð4Þ

we can write Eq. (2) as

wmðxÞ ¼ NTqm: ð5Þ

This polynomials are providing C1 continuity which gives reason-
able accurate results for bending problems. If more precision is
needed, curvature j can be introduced as the additional degree of
freedom in nodal line which yields approximative polynomial of
fifth order and provides C2 continuity. Strip with these two addi-
tional degrees of freedom is designated as higher order strip
(HO2) [2–4].

Parts of approximative function in y direction, Ym(y), are chosen
as mode shapes of free vibrations of Bernoulli–Euler beam. These
functions are the solutions of the differential equation

d4YðyÞ=dy4 � YðyÞðl4=a4Þ ¼ 0 ð6Þ

and they depend on boundary conditions. All six types of beam’s
boundary conditions consisting of: simple supported (S), clamped
(C) and free (F) are considered here. These well-known eigenfunc-
tions [17] are presented in Table 1.

It should be noted that some of these eigenfunctions require
different form because of numerical instability which is introduced
for higher modes. Likewise, roots (lm) of the characteristic equa-
tions which appear when solving Eq. (6), need more accurate val-
ues than classical one, presented in Table 1. This numerical
instability is caused by subtraction of two nearly equal numbers
for higher modes [18]. Having this in mind, some authors suggest
usage of different functions which are free of these errors
[19,20]. Nevertheless, because of their clear physical meaning,
function forms and roots are used in this research and reasonable
accurate results are obtained. If one needs large number of series
terms included in analysis, function forms presented in [18] are
recommended.

2.2. Compound strip method

Typical part of structure suitable for modeling with the CSM is
presented in Fig. 2. If we have plate with longitudinal beams (lb),
transverse beams (tb) and columns (co), it is possible to model with
compound strip. First we have to calculate stiffness and mass prop-
erties of line elements relative to the plate’s middle plane, and then

Fig. 1. Flat shell LO2 finite strip – part of the discretized structure.
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