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a b s t r a c t

This paper presents an efficient inelastic and large deflection analysis of space frames using spread of
plasticity method. New accurate formulae are proposed to describe the plastic strength surface for steel
wide-flange cross sections under axial force and biaxial bending moments. Moreover, empirical formulae
are developed to predict the tangent modulus for cross sections under the combined forces. The tangent
modulus formulae are extended to evaluate the secant stiffness that is used for internal force recovering.
The formulae are derived for steel sections considering the residual stresses as recommended by Euro-
pean Convention for Construction Steelwork (ECCS). A finite element program based on stiffness matrix
method is prepared to predict the inelastic large deflection behavior of space frames using the derived
formulae. The finite element model exhibits good correlations when compared with the fiber model
results as well as previous accurate models. The analysis results indicate that the new model is accurate
and computational efficient.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there were numerous researches on the simula-
tion of the nonlinear behavior of beam–columns in space steel
frames [1–6]. In general, the nonlinear behavior of steel frame
can be predicted by using finite element method in which frame
members are modeled by using solid, plate or shell elements
[7,8]. This method could successfully capture the nonlinear behav-
ior of the structure but it is too time-consuming because of the
great number of elements required for this type of analysis. More-
over, the model processing of this analysis type is not easy at all. In
the other direction of nonlinear analysis of steel frames, a ‘‘line ele-
ments’’ approach is widely used. These studies may be categorized
into two main types: plastic hinge analysis and spread of plasticity
analysis. The plastic hinge formulation is the most direct approach
for representing inelasticity in a beam–column element [9–12]. In
plastic hinge approach, the effect of material yielding is lumped
into a dimensionless plastic hinge. Generally, this type of analysis
is limited by its ability to provide the correct strength assessment
of beam–columns that fail by inelastic buckling. This is because the
plastic hinge analysis assumes that the cross-section behaves as
either elastic or fully plastic, and the element is fully elastic be-
tween the member ends [13–15]. In this model, the effect of resid-
ual stresses between hinges is not accounted for either. The
advantages of this method are its simplicity in formulation as well

as implementation and the least elements needed for member
modeling. The stability functions may be introduced to consider
geometric nonlinearities using only one beam–column element
to define the second-order effect of an individual member so it is
an economical method for frame analysis [16,17]. This method ac-
counts for inelasticity but not the spread of yielding through the
section or between the plastic hinges. For slender members in
which failure mode is dominated by elastic instability, the plastic
hinge method compares well with spread of plasticity solutions.
However, for stocky members that suffer significant yielding, it
overestimates the capacity of members due to neglect of gradual
reduction of stiffness as yielding progresses through and along
the member. The so-called refined plastic-hinge analysis, based
on simple refinements of the plastic hinge model, was proposed
for frames analysis in order to overcome disadvantages of the elas-
tic–plastic hinge method [18–20].

On the other hand, the spread of plasticity method uses the
highest refinement for predicting the inelastic behavior of framed
structures. In the spread of plasticity method, the gradual spread
of yielding is allowed through the volume of the members. In this
method, a frame member is divided into subelements, and the
cross-section of each element is subdivided into many fibers
[21–25]. The internal forces are calculated by integrating the cross
sectional subelement forces. In such case, residual stress in each fi-
ber can be explicitly considered, so, the gradual spread of yielding
can be traced [26–31]. Because of considering the spread of plastic-
ity and residual stresses in a direct way, a spread of plasticity
solution is considered an exact method. Although the spread of
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plasticity solution may be considered ‘exact’, it is still too
computationally intensive and too costly. Among these two types
of analysis the co-called fiber hinge method was developed in an
attempt to take the advantages of the two methods [32]. In which,
the element is divided into three segments, two end-fiber hinge
segments and an interior elastic segment, to simulate the inelastic
behavior of the material according to the concentrated inelastic
approximation. The mid-length of end hinge segment is divided
into fibers so that the uniaxial stress–strain relationships of the fi-
bers can be monitored during the analysis process.

Recently, a new simplified model was proposed by the Author
based on the spread of plasticity method in an attempt to elimi-
nate the need of cross section discretization [33,34]. In this model,
closed form formulae were derived to predict the tangent modulus
of steel cross sections subjected to combined axial force and
uniaxial bending moment about major or minor axis considering
the residual stresses. Due to eliminating the integration of internal
forces on the cross section level, a lot of consumed computational
time could be saved. In the present paper tangent modulus of
wide-flange steel cross sections subjected to axial compression
force and biaxial bending is derived. New formulae are derived
by simulation of the results obtained from the fiber model. Prior
to the derivation of tangent modulus, new plastic strength surfaces
for H-shaped cross sections subjected to axial force and biaxial
bending moment are proposed. The model achieves the accuracy
of the spread of plasticity method but in an easy and a direct
way. The research aims to eliminate complex calculations and so
minimizing the consumed running time and the cost. The
updated-Lagrangian method is applied in the formulation of the
incremental matrix equilibrium equations of the proposed
beam–element model [35,36]. The minimum residual displace-
ment combined with Newton–Raphson method is used to
satisfy the convergence when solving the nonlinear equilibrium
equations.

2. Numerical model

2.1. Basic assumptions

The following assumptions are made in the formulation of the
beam–column element:

(1) A plane cross section remains plane after deformation.
(2) Local buckling and lateral torsional buckling are not

considered.
(3) Small strains but large displacements and rotations are

considered.
(4) Only H-shaped sections are considered.
(5) Strain hardening is not considered.
(6) The effects of shear forces and torsional moment are not

considered when deriving the cross sectional plastic surface
as well as the tangent modulus.

2.2. Cross-section plastic strength

The determination of cross-section plastic strength surface is
very essential in order to predict the nonlinear behavior of struc-
tural members. The most common formulae that describe the full
plastification surface for cross sections are those proposed by
AISC–LRFD and Orbison. Recently, analytical plastic interaction cri-
teria for steel I-sections under biaxial moment and axial force were
developed by Baptista [37]. Although the method requires many
calculations, it is considered as an exact method.

For cross sections subjected to axial force and biaxial bending
moments about both axes, Orbison’s formula is given as [38]
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while the AISC–LRFD plastic surface formula is given as [39]
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where a is a factor that equal unity at full plastification surface, pr is
the ratio of the applied normal force P to the yield value Py at the
plastic strength envelope (pr = P/Py), and mrz and mry are the ratios
of the applied bending moments Mz (about minor axis) and My

(about major axis) to the corresponding plastic moments Mpz and
Mpy, respectively, at the plastic strength envelope.

In the present paper, a new formula is derived to describe the
wide flange cross section plastic strength surface based on the re-
sults obtained from the analysis of many cross sections. The cross
sections are analyzed using the fiber model in which the cross sec-
tion is discretized into small fibers as shown in Fig. 1. The analyzed
cross sections are selected to cover all popular universal column
cross sections. Twenty universal column sections (H-shaped
section) are analyzed in which the ratios B/T = 5.5–22.4, D/t = 10–
34.2 and D/B = 0.97–1.13, where D, B are the cross section depth
and the flanges breadth, respectively, and t and T are the thick-
nesses of cross section web and flanges, respectively.

The cross sections are analyzed using linear strain distribution
along their axes. For each cross section, curvatures with different
ratios are gradually increased until reaching the maximum possi-
ble bending moments at a fixed value of axial force. The internal
forces (P, My and Mz) are evaluated by accumulation of uniaxial
stresses for all cross section discrete as follows:

y (major axis)

z (minor axis)

Fig. 1. Cross sectional fiber model.
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Fig. 2. Proposed cross sectional plastic strength.
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