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a b s t r a c t

Previous experimental work has identified variations in the natural frequency and the modal damping
ratio of the first vertical bending mode of vibration of a simply supported, single span steel–concrete
composite bridge. It was found that the natural frequency decreased and the modal damping ratio
increased with increasing amplitudes of vibration. This paper illustrates the influence of these variations
on the train-bridge resonance of this particular bridge by means of a non-linear single degree of freedom
system, based on the previously mentioned experimental results. As one might expect, the results indi-
cate that the influence of the increasing damping ratio leads to a considerable decrease in the resonant
amplitude whilst the decreasing natural frequency decreases the critical train speed at which resonance
occurs. Further studies along this line of research may help us reduce the uncertainties in dynamic
assessments of existing bridges based on dynamic measurements and improve our understanding of
the dynamic properties of railway bridges in general.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic response of railway bridges subjected to high-
speed trains is mainly governed by different states of resonance
between the bridge and the train. The load induced by the train
will, at certain train speeds, have components with frequencies
that match eigenfrequencies of the structure. Thus, many possible
combinations of train configurations and train speeds can exist
which cause states of train-bridge resonance. This is one of the
main issues in design of new bridges for high-speed railway lines
and in dynamic assessments of existing bridges, which is becoming
increasingly interesting for railway owners who wish to increase
the maximum allowed train speed and axle loads.

From an analysis of single degree of freedom systems, one
knows that in a state of resonance, the amplitude of vibration is
mainly governed by the damping of the system. This also holds
true for multi degree of freedom systems as well as for continuous
systems, although in such cases, different combinations of modes
may be relevant. However, variations in the eigenfrequency are
also likely to influence the state of resonance, mainly by altering
the critical train speed.

Previous studies [2,4] have given indications that for certain
bridges, the damping ratio and the natural frequency have a
dependency on the amplitude of vibration. The nature of these
non-linearities are not well known but candidates have been

suggested in the non-linear material properties of soil materials
and concrete, which both have the same tendency: the damping
increases and the stiffness decreases with the deformation of the
materials. Fink and Mähr [3] reported experimental findings from
a scaled laboratory model of a ballasted railway bridge which sup-
port the hypothesis that the ballast is one of the main sources to
this behavior.

This paper aims at illustrating the influence of the non-linear
dynamic properties of a simply supported, ballasted composite
bridge on its response at resonance. A simple single degree of free-
dom system representing the first vertical bending mode of the
bridge is used to simulate the response caused by a typical freight
train and for a theoretical study of the train bridge resonance based
on the Eurocode HSLM (High Speed Load Model) trains [5].

As the state of resonance is often dominated by a single mode of
vibration, a qualitative analysis of this type of models may provide
some insight into the real behavior at resonance. A formalized
knowledge of the railway bridge response at resonance may lead
to substantial savings for society, if it turns out that at resonance,
the increased damping leads to a much smaller response than that
predicted by linear theories.

2. Theory

2.1. A non-linear single degree of freedom system

Without explicitly knowing the sources to the non-linear
behavior, models can only be devised in a ‘‘black-box’’ sense.
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Measurements can give estimates of the relations between the dy-
namic properties (natural frequency and damping ratio) of differ-
ent modes of vibration and the amplitude of vibration in those
modes, see [4] and the references therein. Given such relations, a
non-linear single degree of freedom system can be established

m€xþ cðxÞ _xþ kðxÞx ¼ f ð1Þ

where x is the generalized coordinate of the fundamental mode of
vibration, m is the generalized mass, c(x) is an amplitude dependent
viscous dashpot coefficient, k(x) is a non-linear spring constant and
f = f(t) is the generalized forcing function.

The non-linearities are assumed to be small in the sense that
the frequency does not vary much around the limit value at
€x ¼ 0 and the mode shape is assumed to be constant, independent
on the amplitude of vibration. Furthermore, the ’’black-box’’ nature
of the proposed model presumes that variations in support stiff-
ness and damping and the interaction between the structure and
the embankments and with the track superstructure are all
grouped together in the eigenfrequency and the damping ratio.

The load model used to define the generalized force function f(t)
is also subjected to some simplifying assumptions, namely that the
train-bridge interaction may be neglected, thus leaving out the var-
iation in mass damping and perhaps to some extent in stiffness,
caused by the passing train.

Frybá [1] derived a solution for the response of a simply sup-
ported beam subjected to a pulse train moving along the beam.
In the present analysis, we wish to solve for the temporal coordi-
nate using a numerical technique in order to include the non-linear
system parameters, but the generalized force for the first mode of
vibration is approximated in the same way as in [1]:

f ðtÞ ¼
XN

i¼1

Fi�iðtÞ/ðct � diÞ ð2Þ

where Fi is the axle load of axle number i, N is the number of axles,
�(t) is a function defined by

�iðtÞ ¼ Hðt � di=cÞ � Hðt � ðdi þ LÞ=cÞ ð3Þ

where H(t) is Heaviside’s function. Furthermore, di is the distance
from the ith axle to the first point on the beam, L is the length of
the beam and /(x) is the first (vertical bending) mode of vibration

/ðxÞ ¼ sin
px
L

� �
ð4Þ

This representation of the load function is a consequence of
expanding the spatial coordinate in a Fourier series. This series will
repeat itself indefinitely along the spatial coordinate, but we are
only interested in x 2 (0,L). The function �i(t) simply ensures that
the load is not applied to the repeated occurrences of the physical
structure. Otherwise, the analysis would comprise a structure
equivalent to an infinite continuous beam on simple supports.

The parameters of Eq. (1) can be rearranged so that the follow-
ing equation is obtained

€xþ 2nðxÞxnðxÞ _xþx2
nðxÞx ¼

f
m

ð5Þ

where n(x) and xn(x) are the amplitude dependent damping ratio
and natural circular frequency of the fundamental mode of
vibration.

A methodology to determine the amplitude dependency of the
natural frequency and damping ratio from measured free vibra-
tions after the passage of a train using the continuous wavelet
transform (CWT) have been presented in [4]. More general applica-
tions of the CWT have been presented in several papers, see for
example [6]. In this paper, bilinear relations based on the analysis
presented in [4], were used to model the amplitude-dependency of

the dynamic properties of the first mode of vibration. These rela-
tions, which may be represented by the generic relation

gð€xÞ ¼
g0 þ kj€xj; j€xj 6 €xc

gc; j€xj > €xc

�
ð6Þ

are shown in Fig. 1 with the parameters given in Table 1. The linear
part of these functions were determined by means of the CWT,
based on five train passages at slightly different speeds. For further
details, the reader is referred to [4]. The constant parts of these
functions have been assumed and reflect the lack of knowledge
about these relations at accelerations greater than 0.3 m/s2.

The relations given by Eq. (6) were derived using measurements
of acceleration. However, in solving non-linear differential equa-
tions it is much more convenient to have the non-linearity on
the displacement and/or the velocity as then, well-known numer-
ical methods may be directly applied. In the present context, this
does not pose any serious difficulties, because the non-linear rela-
tions given by Eq. (6) are defined using the free vibrations of a sin-
gle mode of vibration. Therefore, the displacement during the free
vibrations can be determined from measurements of acceleration
simply by applying a high-pass filter to the signal and integrate
it numerically. By doing so, and normalizing the results it is easy
to verify that the displacement during free vibrations is propor-
tional to the accelerations according to

uðtÞ �
€uðtÞ
x2 ð7Þ

with a phase-shift p. This is shown in Fig. 2, where x was taken as
2p3.9 rad/s which clearly shows that the variation in frequency is
slow enough to make this approximation feasible, i.e. the accelera-
tion of the free vibrations may be obtained from the displacement
function by applying a scaling and a translation. Formally, this
means that the frequency and amplitude modulated signal which
is considered here

uðtÞ ¼ AðtÞ cosðxðtÞtÞ ð8Þ

has the property that _xðtÞ � 1, i.e. slow variations in x(t). Thereby,
the generic relation (6) can be restated as a function of displace-
ment, simply by making the change of variables €x ¼ �x2

0x, with
x0 being the natural frequency at small amplitudes of vibration.
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Fig. 1. Top: The damping ratio function (in %) for the SDOF-model. Bottom: The
frequency function (in Hz) for the SDOF-model.
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