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a b s t r a c t

The dynamic response of railway bridges is known to be influenced by a combination of factors including
the bridge natural frequency, train speed, and bridge and carriage lengths. However, the intrinsic rela-
tionships among these parameters have seldom been elaborated in common dynamics terms so as to
enable more effective implementation in practice. This paper attempts to approach this classic problem
from a frequency perspective, by investigating into the frequency characteristics in the bridge response as
well as in the moving trainloads. In particular, the significance of the so-called ‘‘driving’’ and ‘‘dominant’’
frequencies arising from the moving load is examined. Based on numerical results and a securitization
using a generalised trainload pattern, it is demonstrated that the primary frequency contents in the train-
load, and consequently in the dynamic response of the bridge, is largely governed by the bridge-to-car-
riage length ratio. Namely, for short bridges (with a length ratio below the order of 1.5), well-distributed
frequency peaks occur at a number of dominant frequencies, whereas for longer bridges the main fre-
quency peak tends to concentrate towards the lowest dominant frequency. Such a characteristic affects
directly the resonance condition and resonance speeds for bridges of different length categories, and this
observation echoes well the predictions of the resonance severity using a so-called Z-factor. For the spe-
cial case of bridge response under a single carriage/vehicle, the influence of the carriage mass is examined
in association with the concept of critical speed, and the abnormal acceleration spikes that could occur
when the vehicle moves at the critical speed is highlighted.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic response of railway bridges is complicated due to
the involvement of moving loads and moving masses. Comparing
to road traffic, the trainload excitation is characterised by a unique
pattern of frequency spectrum, which directly affects the dynamic
response of the bridge. Moreover, the dynamic properties of rail-
way bridges, especially the natural frequencies of small- to med-
ium-size bridges, can be altered significantly due to moving
carriage masses.

Numerous publications exist in the literature regarding bridge
dynamic response and the train–bridge interactions. It is well
recognised that the dynamic response of a railway bridge is influ-
enced by a combination of factors, chiefly the bridge natural fre-
quency, train speed, and bridge and carriage lengths. However,
the intrinsic relationships among these parameters have generally

been implicitly expressed through dynamic formulations, whereas
specific guides for their application in practice are lacked. For
example, it is not straightforward to implement a general recom-
mendation that resonance could take place under certain norma-
lised speeds, without specific information with regard to the
resonance severity and an understanding of the trend of variations.

A seemingly effective way of approaching this subject is to re-
sort to the frequency analysis of the trainload in conjunction with
the frequency characteristics of the responding system. However,
studies stemming from a frequency perspective are still limited.
Those that fall into this category may be loosely divided into two
groups, one concerns the variation of the natural frequencies of
the responding bridge during the passage of a laden train/vehicle
(e.g. [1–5]), and the other deals with the frequency contents in
the trainload excitation and their general effect in the bridge re-
sponse (e.g., [5–8]). In particular, it has been demonstrated that,
in addition to the resonant frequencies, the primary frequencies
in the bridge response may be attributable to (a) the so-called
‘‘driving frequencies’’ associated with the duration of a vehicle
crossing the bridge [8], and (b) the so-called ‘‘dominant frequen-
cies’’ arising from the repeated loads (hence are related to the time
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interval between two consecutive carriage loads) (e.g., [7,9]). De-
spite the identification of these frequency factors, the understand-
ing of their influence on the bridge response remains to be rather
general.

The present paper aims to provide a comprehensive evaluation
of the frequency characteristics of a railway bridge response under
trainload, paying special attention to examining the significance
and the variation trend of key frequency components in the re-
sponse arising from the trainload, namely the driving frequencies
and dominant frequencies mentioned above. To incorporate the
influence of the moving mass, the analysis is carried out using a fi-
nite element model, in which a moving vehicle is simulated with a
moving mass block which is coupled with the bridge via surface
contact. For simplicity while withholding the primary frequency
characteristics, the vehicle dynamics and track irregularities are
not considered.

It is particularly worth noting that the relative length of the
bridge with respect to the length of the carriage is found to be a
governing factor determining the characteristic patterns and hence
the frequency contents in the trainload excitation, and therefore
this length ratio is employed in the classification of the frequency
response characteristics. Following the establishment of the fre-
quency characteristics, the bridge resonance effect is evaluated
through a series of parametric calculations. The observations on
the resonance phenomenon are then correlated with a newly pro-
posed resonance severity factor, called the Z-factor [10], to provide
a complete framework for the understanding as well as quantifica-
tion of the bridge resonance under moving trains.

2. Background theories

2.1. Natural frequency of bridge–moving train system

When a train moves on a bridge, the frequencies of the bridge
will be affected due to the effects of train mass coupled with the
bridge through the suspension systems. When the train mass is
large with respect to the mass of the bridge, such effect can be-
come significant.

The natural frequencies of the bridge during the passage of a
train (or a single vehicle as a specialised case) may be established
on the basis of the dynamic equation for the bridge coupled with
the moving object, as follows:

mb
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@t2 þ EI
@4wb

@x4 þ cb
@wb

@t
¼ Pðx; tÞ ð1Þ

where EI, mb, cb are the flexural stiffness, mass per unit length and
damping coefficient of the bridge, wb is the bridge vertical displace-
ment, and P(x, t) is the interacting force between the vehicle and the
bridge.

The interacting force with the ith wheel–axle set may be ex-
pressed as [2]:

Piðx; tÞ ¼ d½x� ðVt � aiÞ� P0;i �mc
@2wb
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where d is the Dirac delta function, P0,i is the static weight borne by
the ith wheel–axle set, ai is the distance between the first and ith
wheel–axle sets, wi is the displacement within the suspension
spring, mc denotes the effective mass that may be attributed to a
wheel–axle set, cc, kc are spring damping and stiffness of the vehi-
cle’s suspension system, respectively.

The solution of the motion equation can be obtained by modal
superposition. Denoting the nth mode shape as /n(x) and the gen-
eralised modal coordinate as qbn(t),

wbðx; tÞ ¼
X

n

/nðxÞqbnðtÞ ð3Þ

For a simply supported bridge (beam), the mode shapes may be
expressed in a sinusoidal form, thus:

wbðx; tÞ ¼
X

n

sin
npx
Lb

qbnðtÞ ð4Þ

where Lb is the bridge length.
Substituting Eqs. (2) and (4) into Eqs. (1), multiplying both sides

with sin (npx/Lb), and then integrating with respect to Lb yields:
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where xbn is the nth natural frequency, nbn is the corresponding
damping ratio, Pbn(t) is the generalised modal force and may be
expressed [1] as:
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A numerical integration method, such as the Wilson-h method,
can be employed to obtain the bridge natural frequencies at each
time step. The results will allow the variation of the bridge fre-
quency to be plotted against time or the position of the moving
train.

2.2. Driving frequencies

The so-called ‘‘driving frequency’’ [8] is associated with the in-
verse of the time duration a vehicle crosses the bridge. Specialising
Eq. (2) into a single moving load,

Pðx; tÞ ¼ fcðtÞdðx� VtÞ ð7Þ

where fc (t) is the sum of the vehicle weight and the dynamic force
of the suspension system,

fcðtÞ ¼ �mcg þ kcðwc �wbÞ ð8Þ

where kc is the stiffness between moving mass and the bridge, wc

and wb are the dynamic deflections of the moving mass and the
bridge, respectively.

Substituting Eq. (7) into Eq. (5), and ignoring the damping term
yields:
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Combining with the motion equation of the moving mass, and
substituting Eq. (8), Eq. (9) may be re-written as [8]:

€qbn þx2
bnqbn þ

2x2
c mc

mbLb
sin

npVt
Lb

X
j

sin
jpVt

Lb
qbj �

2x2
c mc

mbLb

� sin
npVt

Lb
qc ¼

�2mcg
mbLb

sin
npVt

Lb
ð10Þ

If the mass of the passing vehicle is much less than that of the
bridge and hence may be ignored, the above equation reduces to:
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Assuming a zero initial condition, the solution to the above equa-
tion may be obtained as:

qbnðtÞ ¼
D
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