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a b s t r a c t

Recent technological developments have led to improvements in the strengths of materials, such as the
steel and wire ropes used in the construction of cable supported bridges. This, combined with technolog-
ical advancements in construction, has encouraged the design of structures with increasing spans, leaving
the question of material and environmental costs behind. This paper presents a refined mathematical
model for the assessment of relative material costs of the supporting structures for cable-stayed and
cable suspension bridges. The proposed model is more accurate than the ones published to date in that
it includes the self weight of the cables and the pylons. Comparisons of material requirements for each
type of bridge are carried out across a range of span/dip ratios. The basis of comparison is the assumption
that each structure is made of the same material (steel) and carries an identical design load, q, exerted by
the deck. Calculations are confined to a centre span of a three-span bridge, with the size of the span rang-
ing from 500 m to 3000 m. Results show that the optimum span/dip ratio, which minimises material
usage, is 3 for a cable-stayed (harp type) bridge, and 5 for a suspension structure. The inclusion of the
self weight of cable in the analysis imposes limits on either the span, or span/dip ratio. This effect is quan-
tified and discussed with reference to the longest cable-supported bridges in the world completed to date
and planned in the future.

� 2012 Elsevier Ltd. All rights reserved.

1. Background

Over the years, a number of studies related to the assessment of
the volume of material and material costs in cable-stayed and sus-
pension bridges have been produced. A relatively simple model
used by French [1], which excluded the self weight of cables and
pylons, demonstrated that, with the cost of the cable material
twice that of the pylons, the optimum span/dip ratio for the sus-
pension bridges was 9:1. This prediction was based on the allow-
able stresses in the cables of 600 N/mm2, and 120 N/mm2 in the
pylons, which values were significantly lower than the up-to-date
strengths of 700 N/mm�2 and 160 N/mm2, respectively, as used by
Gimsing [2] and the author of this paper.

The model proposed by Gimsing [2], included the self weight of
pylons, as this was viewed as important in the final assessment of
the ‘lightness’ of the structure, but excluded the self weight of the
cables. Surprisingly, it also excluded the additional weight of the
deck required in the cable-stayed bridge to resist the substantial
membrane forces that develop there. Based on these assumptions,
the model predicted an optimum span/dip ratio for both suspen-
sion and cable-stayed (fan type) bridges with the main span of
500 m to be �6.6. This was based on material costs, assuming that

the unit cost of steel in the pylons was the same for both systems,
but the ratios of the unit price of cable to pylon were different: 1.75
in the case of the suspension bridge, and 2.5 for the cable-stayed
structure. This optimum span/dip ratio was unchanged for the sus-
pension bridge when the main span was doubled, i.e., equal to
1000 m.

Earlier work by Podolny and Scalzi [3] stated that the most eco-
nomical span/dip ratio for the cable-stayed bridges was 5:1, and
8:1 for the suspension type. It reported on the work of Leonhardt
and Zellner [4], which produced a modification factor on the mate-
rial volume used by the cable when the cable weight was included.
Taking the span/dip ratio of 9:1 for the suspension bridge, a 5:1 for
the cable-stayed one, and a central span of 3280 ft. (1000 m), the
proposed modification increased the cable steel requirements for
the suspension bridge by 17%, but only by 5% for the cable-stayed
structure.

The work quoted above highlights the issue of scale. Parsons [5]
showed that on the basis of an approximate relationship between
the cost per unit area of roadway and the span, suspension bridges
were more economic for spans above 600 m (the height of the py-
lons was not given). He stressed the fact that the span of a suspen-
sion bridge was limited only by the tensile strength of the cable
and this prime structural element is inherently stable, while the
span of a cable-stayed structure is limited by the compressive
strength of the deck which is inherently unstable.
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More recently, Croll [6] offered a simple analysis of the relative
usage of the material by cable-stayed (harp type) and suspension
bridges, respectively. In common with Gimsing [2] and French
[1], the calculation for the volume of the material was based on
the design principle that the cross-section of any load-carrying
member should not be stressed beyond an assumed value of work-
ing stress. The analysis ignored the self weight of the cables and
the pylons. Surprisingly, in the initial model, no distinction was
made between the tensile strength of the cables and the pylons,
and simply one value was used for both. The modification of the
model, following contributions from Dalton et al. [7], included
not only material usage, but also material cost. The calculated
material volumes were factored using a compound material and
cost parameter, b, expressed as a ratio of tensile to compressive
stresses, further multiplied by a ratio of unit costs of cable to pylon.
The factor b ranged between 1 and 5. After this modification, the
results showed the suspension bridges to be more cost efficient
than the cable-stayed ones, for span/dip ratio greater than 4. They
also showed an optimum span/dip ratio for a cable-stayed bridge
to be between 2 and 3 and, for a suspension structure, between 4
and 7 (depending on the b factor).

In view of the inconsistent and conflicting information pro-
duced to date, a more rigorous analysis of material usage (includ-
ing material cost) is needed in the design of cable supported
bridges. This paper addresses this problem by examining the sub-
ject more closely and presenting an analysis that is as close to real-
ity as possible.

2. Suspension bridge

2.1. General

Fig. 1 shows the basic geometry of a suspension cable bridge in
which L is the centre span of the bridge and h is the height of

towers above the deck. The distribution of forces in the main struc-
tural elements is shown in Fig. 1a.

The prediction of material usage is based on the centre span.
The general assumptions are as follows:

(i) The bridge is subjected to a uniformly distributed
design deck load, q, the weight of the cables and the
pylons.

(ii) The shape adopted by the suspension cables is assumed to
be a parabola. This shape corresponds to the case of a uni-
formly distributed load from the deck, q, and follows the
usual assumption that hanger and cable weights are negligi-
ble compared to q.

(iii) The hangers form a uniform ’curtain’ suspended from the
cables and stressed by q. It is shown later that the stress
due to the self weight of hangers is negligible. Hence, the
amount of material used by them is simply proportional to
the area under the parabolic cable.

(iv) The cross-section of the suspension cable is calculated by
dividing the maximum tension force in the cable by an
assumed constant value of working (tensile) stress, rt; the
product of the cross-section area and the length of the cable
gives the volume of the material required.

(v) Each pylon is assumed to carry a half of the deck weight,
qL/2, the self weight of the cables and their own weight;
their cross-section area varies with height in such a manner
as to ensure constant stress.

2.2. Calculation of the volume of material used by hangers

The hangers, modelled as a ‘curtain’ of individual strands, have
thickness, t. If qh is the density of the hanger and Thng(z) is the
tensile stress, the equation of vertical equilibrium of the hanger
element, tdxdz, (Fig. 1a) is

Fig. 1a. Diagrammatic representation of forces in the main structural elements of the bridge.
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Fig. 1. Basic geometry of a suspension cable bridge.
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