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a b s t r a c t

One of the most important aspects of the seismic response of elastomeric isolators is their stability under
large shear strains. The bearing capacity of elastomeric isolators, indeed, progressively degrades while
increasing horizontal displacement. This may greatly influence the design of elastomeric isolators, espe-
cially in high seismicity regions, where slender elastomeric isolators subjected to large horizontal dis-
placements are a common practice. In the current design approach the critical load is evaluated based
on the Haringx theory, modified to account for large shear strains by approximate correction factors.

In this paper the critical behavior of a pair of slender elastomeric devices is experimentally evaluated at
different strain amplitudes, ranging from approximately 50% to 150%. The experimental results are then
compared to the predictions of a number of semi-empirical and theoretical formulations.

The main conclusion of this study is that current design approaches are overly conservative for slender
elastomeric seismic isolators, since they underestimate their critical load capacity at moderate-to-large
shear strain amplitudes.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An elastomeric isolation bearing consists of a number of rubber
and steel layers mutually vulcanized, to provide high stiffness in
the vertical direction together with large deformability in the hor-
izontal direction. The elastomeric isolators work like a filter length-
ening the fundamental period of vibration of the structure, thus
reducing the seismic effects (interstory drifts, floor accelerations,
stresses in the structural members, etc.) generated in the super-
structure. However, this reduction is accompanied by large hori-
zontal displacements in the isolators, which may significantly
reduce their axial load capacity [1–4].

The earliest theoretical approach for the evaluation of the critical
axial load of rubber bearings was introduced by Haringx [5], consid-
ering the mechanical characteristics of helical steel springs and rub-
ber rods. Same assumptions have been made later by Gent [6]
considering multilayered rubber compression springs. Basically,
the Haringx’s theory is based on a linear one-dimensional beam
model with shear deformability, within the hypothesis of small
displacements. The critical buckling load of elastomeric seismic
isolators is expressed as:

Pcr;0 ¼
2 � PE

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

ðEIÞeff

ðGAsÞeff � L
2

s ð1Þ

in which: ðGAsÞeff and ðEIÞeff are the effective shear rigidity and effec-
tive flexural rigidity, respectively, of the elastomeric isolators, com-
puted based on the bending modulus (E) and dynamic shear
modulus (Gdyn) of rubber, moment of inertia of the bearing about
the axis of bending (I) and bonded rubber area (As);

PE is the Euler load for a standard elastic column:

PE ¼
p2 � ðEIÞeff

L2 ð2Þ

L is the total height of rubber layers and steel plates excluding top
and bottom connecting steel plates.

Various authors proposed different relations to evaluate the
effective shear and flexural rigidity of laminated rubber bearings.
In this paper, reference to the formula derived by Buckle and Kelly
[1], Koh and Kelly [2] has been made:

ðGAsÞeff ¼ Gdyn � As �
L
te

ð3Þ

ðEIÞeff ¼ ErI �
L
te

ð4Þ

where te is the total thickness of the rubber layers and Er is the elas-
tic modulus of the rubber bearing evaluated based on the primary
shape factor S1 and rubber Young’s modulus E0 as:

Er ¼ E0ð1þ 0:742 � S2
1Þ ð5Þ

The primary shape factor S1 is defined as the ratio between the
loaded area of the bearing and the area free to bulge of the single
rubber layer (S1 � D/4ti for circular bearings, where D is the diameter
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of the isolator and ti the thickness of a single rubber layer). The rub-
ber Young’s modulus E0 is usually taken equal to 3.3 Gdyn to 4 Gdyn.

The Haringx’s theory has been later applied by Naeim and Kelly
[7], with a series of simplified assumptions, for commercial elasto-
meric seismic isolators. According to Naeim and Kelly [7], the critical
buckling load of elastomeric seismic isolators can be expressed in
terms of the primary and secondary shape factors S1 and S2, the latter
being defined as the ratio between the maximum dimension of the
cross section of the isolator and the total height of rubber. For circu-
lar elastomeric isolator, for instance, Naeim and Kelly [7] provides:

Pcr;0 ¼
p

2
ffiffiffi
2
p � ðGAsÞeff � S1 � S2 ð6Þ

Subsequently, Kelly [8] derived a more refined formulation of the
buckling load of elastomeric isolator:

Pcr;0 ¼
p

2
ffiffiffi
3
p � ðGAsÞeff �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:742 � E0

G

r
� S1 � S2 ð7Þ

The secondary shape factor S2 is defined as the ratio between the
bearing maximum dimension and the total thickness of all the rub-
ber layers (S2 � D/te for circular bearings, where te is the total thick-
ness of all the rubber layers). It is interesting to note that the critical
buckling load capacity evaluated considering the expressions (6)
and (7), differs by 10–20%, depending on the value (between 3.3G
and 4G) assumed for the rubber Young’s modulus.

Lanzo [9] modified the Haringx’s expression by taking into ac-
count the axial stiffness of the rubber bearing (EA)eff:

Pcr;0 ¼
2 � PE

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2 � EIð Þeff
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where ðEAÞeff is the effective axial stiffness of the rubber bearing,
evaluated as:

ðEAÞeff ¼ Er � A �
L
te

ð9Þ

In Italy, the current design approach [10] refers to a formulation of
the critical load similar to (but more conservative than) that ini-
tially proposed by Naeim and Kelly [7] (see Eq. (6)):

Pcr;0 ¼ Gdyn � As � S1 � S2 ð10Þ

where Gdyn is the dynamic shear modulus derived from the qualifi-
cation tests of the elastomeric isolator.

More recently, a less conservative variant of the Naeim and
Kelly formulation has been adopted in the new European Standard
EN11529 [11]:

Pcr;0 ¼ 1:3 Gdyn � As � S1 � S2 ð11Þ

For all the above mentioned formulations, the buckling load at the
target shear displacement (u) is evaluated as a function of the ratio
between the effective area of the inner shim plate (A) and the over-
lap area of the displaced bearing (Ar) (see Fig. 1):

Pcr ¼ Pcr;0 �
Ar

A
ð12Þ

For circular bearings, for instance, the overlap area at the target
displacement is given by:

Ar ¼ ðu� sin uÞ � D
2

4
ð13Þ

with

u ¼ 2 arccos
u
D

� �
ð14Þ

Several experimental studies of the buckling behavior of elasto-
meric seismic isolators have been carried out in the past

[12,1,3,4,13]. In this paper, the critical load of a couple of slender
(low shape factors) elastomeric bearings is experimentally evalu-
ated. Test set-up and experimental program are presented first in
detail. Then, the experimental results are compared with the pre-
dictions of the theoretical formulations presented in the previous
paragraph.

2. Experimental tests

2.1. Test specimens

Test specimens are a couple of 1:2 scaled circular elastomeric
bearings with 200 mm diameter and 10 rubber layers with 8 mm
thickness. Bearing geometrical properties are summarized in
Table 1.

The mechanical properties of the specimens have been derived
from a number of standard cyclic tests, performed in accordance
with the test procedure prescribed in the Italian seismic code
[10] for the qualification of elastomeric bearings. The static shear
modulus (Gstat), in particular, has been derived from a quasi-static
test consisting of five cycles at 0.1 Hz frequency of loading and
100% shear strain amplitude. According to the NTC 2008 [10], Gstat
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Fig. 1. (a) Schematic deformed shape of an elastomeric bearing subjected to shear
and compression; (b) effective cross section area as a function of shear
displacement.

Table 1
Elastomeric bearings details.

Outer diameter De (mm) 200
Inner diameter D (mm) 180
Rubber layer thickness ti (mm) 8
Number of rubber layers nti 10
Steel shim thickness ts (mm) 2
Number of steel shims nti 9
Total height of rubber te (mm) 80
Primary shape factor S1 5.63
Secondary shape factor S2 2.25
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