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a b s t r a c t

Impedance-based structural health monitoring (SHM) has come to the forefront in the SHM community
because of its practical potential for real applications. In the impedance-based SHM technique, it is very
important to select the optimal frequency range most sensitive to the expected structural damage, and
more quantitative information on the structural damages might be needed compared to the conventional
damage index. Therefore, this study proposes an innovative neural network (NN)-based pattern analysis
tool (1) to identify damage-sensitive frequency ranges autonomously and (2) to provide detailed infor-
mation such as the damage type and severity. The importance of selecting the optimal frequency range
was first investigated experimentally using a simply-supported aluminum beam. The performance of the
proposed NN-based approach was validated throughout damage identifications of loose bolts and
notches on a bolt-jointed aluminum beam and a lab-scale pipe structure. Finally, the proposed NN-based
algorithm was embedded into a wireless impedance sensor node to detect real damage in a full-scale
bridge. Overall, the proposed approach incorporating a wireless impedance sensor node was used to eval-
uate the damage type and severity in multi-type and multiple structural damage cases.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most civil infrastructure, such as bridges, buildings, water sup-
ply lines, offshore platforms, nuclear power plants, and oil tanks,
are assemblies of load carrying members capable of transferring
a load to the foundations. They are sometimes exposed to severe
environmental and service loading during their lifetime. In partic-
ular, extreme events including earthquakes, typhoons, blast load-
ing, and overloaded traffic deteriorate the strength and
serviceability of members, which is generally called ‘damage’.
Therefore, it is important to develop reliable online structural
health monitoring (SHM) technologies and deploy the rational
SHM systems for civil infrastructure. In particular, there has been
increasing interest in local health monitoring for critical members
of a host structure by utilizing smart sensors such as fiber optic
sensors and piezoelectric sensors during the last decades. Among
them, the electromechanical impedance-based SHM technique
using piezoelectric sensors is a promising tool for host structures
[1–14].

The impedance-based SHM technique utilizes small piezoelectric
sensors, such as piezoceramic (lead (Pb)–zirconate (Zr)–titanate
(Ti); PZT) and macro-fiber composite (MFC) patches, attached to a

host structure as self-sensing actuators to excite the host structure
with a high-frequency sweep and monitor any changes in the struc-
tural mechanical impedance [7]. An assessment regarding the struc-
tural integrity can be made by monitoring the change in electrical
impedance of a piezoelectric sensor. Selection of the optimal fre-
quency range in the impedance signature is closely related to the
sensing capability of the impedance-based SHM technique in
detecting structural damages [15]. On the other hand, few studies
have examined the effect of the frequency range on impedance vari-
ations and it has been recommended that several frequency ranges
containing 20–30 peaks be examined to select the most suitable
range by a trial and error method [7,16].

To this end, an automated technique to select damage-sensitive
frequency ranges and diagnose the damage quantitatively was pro-
posed by using neural network (NN), which consists of an intercon-
nected group of artificial neurons and processes information using
a connectionist approach to its computation. Many studies have
examined the NN approach for a damage estimation of a structure
due to the versatility in dealing with various types of inputs and
outputs and a quick diagnosis capability after training of the NN
was completed. Chaudhry and Ganino [17] examined de-bonding
on a composite/aluminum beam structure with the NN to identify
the severity and presence of delamination. Okafor et al. [18] esti-
mated the delamination of composite beams using piezoelectric
devices using modal analysis and NN. Modal frequencies were used
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for multi-input and the size of the delamination was predicted.
Lopes et al. [19] applied the back propagation NN technique with
impedance measurements to identify the damage and estimate
the severity and location of damage. Giurgiutiu et al. [3] proposed
a damage metric quantification achieved with a features-based
probabilistic neural network. Feature vectors consisted of reso-
nance frequencies, resonance amplitudes, and damping factors.
On the other hand, when the number of features was insufficient
and frequency ranges for impedance measurements were varied,
a misclassification occurred and thus more features were needed
for correct classification. Min et al. [15] utilized the NN approach
to select the optimal frequency range automatically in the imped-
ance-based method. The process to determine governing frequency
components for damage diagnosis was validated by observing the
internal weights and biases in the NN. This study focused on an
extension of this research to extract more information on the level
of structural damage from impedance signatures.

In this study, the impedance-based technique was incorporated
with NN features to select damage-sensitive frequency ranges and
to estimate a range of damage information such as damage type
and severity simultaneously. The theory behind the proposed tech-
nique was presented, and the importance of this approach is de-
scribed with experimental results of an aluminum beam. A series
of experimental applications were then carried out to validate
the feasibility of the technique in detecting loose bolts, crack dam-
ages, and multi-type damages on a bolt-jointed aluminum beam, a
lab-scale pipe structure, and a critical member of full-scale bridge.

2. Electromechanical impedance-based SHM technique

The impedance-based SHM technique employs small piezoelec-
tric sensors that excite a host structure with a high-frequency
band, and simultaneously monitor any changes in the impedance
signature. In addition, the self-sensing property allows one piece
of the piezoelectric sensor to obtain frequency response functions
between the input voltage and output current. When a PZT patch is
surface-bonded to a host structure, Liang et al. [20] first proposed a
one-dimensional analytical model of this setup, and reported that
the electrical admittance (inverse of the electrical impedance),
Y(x), of a PZT patch is associated with the mechanical impedance
of the host structure, Zs(x), and that of a PZT patch, Za(x), for the
frequency range of interest in most applications as follows:

YðxÞ ¼ Io

Vi
¼ GðxÞ þ jBðxÞ
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where Vi is the input voltage to the PZT actuator; Io is the output
current from the PZT; a, �eT

33; d3x, and YE
xx are the geometry constant,

complex dielectric constant, piezoelectric coupling constant, and
complex Young’s modulus of the PZT at zero stress, respectively. Gi-
ven that the mechanical impedance and material properties of the
PZT remain constant, the equation shows that a change in the
mechanical impedance of a structure results directly in a change
in the electrical impedance measured by the PZT. It should be noted
that the admittance function, Y(x), is a complex number. Bhalla et
al. [1] demonstrated that the real part of the measured admittance
(the conductance) changes more sensitively due to the structural
damage condition than the imaginary part (the susceptance). Park
et al. [8] reported that the susceptance can be used more effectively
for piezoelectric sensor self-diagnosis. It can be justified by the fact
that the PZT is a capacitive device and its admittance is dominated
by the imaginary part (jxC).

By observing changes in impedance signals acquired from the
PZT attached on a host structure, assessments can be made regard-

ing the integrity of the host structure [1–14]. Since an impedance
change provides only a qualitative assessment for damage detec-
tion, a scalar damage metric has been used for a quantitative mea-
sure of the damage severity. Peairs et al. [12] compared several
damage metrics but the root mean square deviation (RMSD) and
cross-correlation coefficient (CC) were most commonly used for
the impedance method. These metrics employ the difference in
the impedance value at each frequency as follows:

RMSD ¼
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n
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where Z0(x) is the impedance of the PZT measured in the healthy
condition (baseline); Z1(x) is the impedance in the concurrent con-
dition; n is the number of frequency points; Z0 and Z1 are the mean
values of impedance signals of Z0(x) and Z1(x); rZ0 and rZ1 are the
standard deviations of the real parts (i.e., resistances). With the
RMSD metric, the difference between the baseline reading and the
subsequent reading increases with increasing numerical value of
the metric, which indicates the clearer presence of structural dam-
age. On the other hand, the difference between the baseline reading
and the subsequent reading increases with decreasing value of the
CC metric.

Recently, Koo et al. [21] proposed an effective frequency shift
(EFS; ~x) method, in which a new damage metric was suggested
to compensate for the temperature effect on the impedance meth-
od. The temperature effects due to the surrounding change should
be considered with careful attention because it might result in sig-
nificant impedance variations, particularly a frequency shift in the
impedance, which may lead to erroneous diagnostic results on the
real structure. This was based on the frequency shift giving
the maximum correlation coefficient between the baseline imped-
ance data, Z0(x), and the concurrent impedance data, Z1(x), as

CC ¼max
~x

1
n

Xn

i¼1

fReðZ0ðxiÞÞ � Z0gfReðZ1ðxi � ~xÞÞ � Z1g
rZ0rZ1

( )
ð4Þ

The EFS method provided consistent CC values for impedance
signatures under temperature changes, which cause considerable
variations including both vertical and horizontal shifts under the
same damage condition.

3. Neural network-based intelligent damage diagnosis

A neural network (NN) is constructed using a number of pro-
cessing elements connected to form layers of neurons. It provides
a map between the sets of inputs and outputs by optimally deter-
mining the synaptic weights based on available training patterns of
inputs and outputs. A supervised multi-layer feed-forward NN
with a back propagation algorithm is typically employed (Fig. 1).
During the training stage, the network propagates inputs through
each layer until an output is generated. The calculated error is
transmitted backwards from the output layer and the weights
are adjusted to minimize the error. The training stage is terminated
once a preset error level is reached and the node weights are fixed
at this point. During the testing stage, sets of input data that have
not been used in the training stage are used to validate and gener-
alize the trained NN. For specific information, the following studies
can be referenced in [19,22–27].

Fig. 2 shows the proposed scheme for an intelligent damage
diagnosis to determine the most sensitive frequency range and
extract quantitative damage information. The procedure is as fol-
lows. First, the impedance signals are obtained over a wide fre-
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