Engineering Structures 34 (2012) 466-482

Contents lists available at SciVerse ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Analyses of plastic hinge regions in reinforced concrete beams under monotonic loading

Xue-Mei Zhao, Yu-Fei Wu*, A.Y.T. Leung

Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong

ARTICLE INFO

Article history: Received 17 February 2011 Revised 5 October 2011 Accepted 9 October 2011 Available online 13 November 2011

Keywords: Plastic hinge length Finite Element Analysis Reinforced concrete Beam Curvature localization

1. Introduction

For decades the plastic hinge of reinforced concrete (RC) members where plastic deformation is concentrated has been an interesting and complicated subject for researchers and engineers. The performance of a plastic hinge is critical to the load carrying and deformation capacities of flexural members. In the meantime, plastic hinge region of RC flexural members is a critical zone needing intensive care to prevent failure of structural members from extreme events such as earthquakes. Therefore, quantification of the plastic hinge zone is important not only for design of new structures but also for rehabilitation of old structures. For example, construction of retrofitting work by external FRP jacketing needs to know the extent of concrete crushing zone and significant rebar slipping zone (significant slip causes concrete cover spalling) so that a sufficiently long jacket is constructed.

Although numerous empirical equations have been proposed in extant literature for prediction of plastic hinge length L_p , accuracy (or even the definition) of L_p remains an open issue, yet to be addressed adequately. A combination of three phenomena, namely, the high concentration of compression strain around the section of maximum moment that complicates the notion of base curvature, the tension shift that invalidates the assumption of the plane section remaining plane, and the strain penetration that results in a fixed end rotation at the support, explains the difficulties of the problem [1].

ABSTRACT

Due to the high complexity and difficulty involved, the behavior of plastic hinge of reinforced concrete members has been previously investigated experimentally. This work investigates the plastic hinge analytically, using the finite element method. Lengths in the plastic hinge region involving rebar yielding zone, concrete crushing zone and curvature localization zone are studied systematically, under different parameters. The results show that none of the existing empirical models is adequate for prediction of plastic hinge length. As high non-linearity occurs in plastic hinge zones, the phenomenon of chaos is observed, for the first time, in flexural response of reinforced concrete structures.

© 2011 Elsevier Ltd. All rights reserved.

Several well-known empirical models [2–13] have been proposed for L_p (Table 1). The conventional plastic hinge length L_p in Table 1 is considered as a virtual length over which a given plastic curvature is assumed to be constant for integration of cross-sectional curvatures along the RC member length, to solve the member's flexural deflection and plastic rotation capacity [14]. In this case, it may not be the physical length of the real plastic hinge region over which the actual plasticity spreads. Nevertheless, physical length of the real plastic hinge region is logically believed to have a certain intimate relationship with L_p .

High nonlinearity of materials and the interactions and relative movements between constituent materials in the plastic hinge zone greatly complicate the problem As a result, studies of plastic hinges in RC members have so far been limited to experimental testing. However, the traditional way to investigate the problem through experimental testing is restricted by the time and cost involved in large tests. As finite element (FE) analyses become increasingly matured and with rapid increase in computer speed and storage capacity, it is becoming possible to simulate the highly complicated problems with the FE method (FEM). This work tries to investigate the plastic hinge region of RC beams in details through FE numerical simulations.

2. Finite element modeling and implementation

Commercial software DIANA is employed for FE simulations in this work. To obtain mesh objectivity, crack band model is adopted in the study, as it has been widely and successfully applied to RC structures for simulation of not only global response but also local

^{*} Corresponding author. Tel.: +852 34424259; fax: +852 34427612. *E-mail address*: yfwu00@cityu.edu.hk (Y.-F. Wu).

^{0141-0296/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.engstruct.2011.10.016

Nomenclature

$ \begin{array}{c} A\\ A_g\\ A_s\\ b\\ c_0 \end{array} $	total area of the element in FE model gross area of concrete section area of tension reinforcement width of beam coefficient related to steel type, axial loading and con- crete strength 0.7 for mild steel 0.9 for cold-worked steel	L_{pc} L_{pcs} L_{sh} L_{sy} M_y M_u n	maximum length of curvature increment zone length of significant curvature localization zone maximum length of rebar strain fluctuation zone maximum length of rebar yielding zone bending moment at yield bending moment at ultimate ultimate axial load on the member allowing for bending
C_1 C_2 C_3 d d_b d_{max} E_c E_s E_{sh} f_c f_c f_s f_t f_y F F_{cr} F_{yr} G_f^{cf} f_f h h_b k k_{yy} L_{cs} L_{cr}	0.7 for mild steel0.9 for cold-worked steel $1 + 0.5(p/p_u)$ $0.9 - (0.3/23.5)(f_c - 11.7) (f_c in MPa)$ effective depth of beam or column diameter of longitudinal reinforcement maximum size of aggregates Young's modulus of concrete Young's modulus of steel hardening modulus of steel concrete compressive strength unconfined concrete compressive strength steel stress concrete tensile strength yield strength of reinforcement applied load load at crack of concrete load at yield concrete fracture energy in compression concrete fracture energy in tension overall depth of cross-section crack bandwidth curvature average curvature within L_{sy} at first yield length of compression zone where $\varepsilon_c > 0.002$ length of compression zone where $\varepsilon_c > 0.002$	p p/p_{o} p_{u} s z β_{e} ε_{c} ε_{s} ε_{sp} ε_{t} ε_{20} σ_{c} σ_{t} θ Δ Δ_{cr} Δ_{yr} ρ_{s} ρ_{sc} τ	ultimate axial load on the member allowing for bending moment when present axial load ratio $0.85(A_g - A_s) + f_yA_s$ ultimate load capacity of the member under axial force only bond slip distance from critical section to point of contraflexure hardening or softening slope of load-displacement curve concrete compressive strain unconfined concrete compressive strain at peak stress steel strain concrete spalling strain concrete tensile strain strain at which the stress reaches 20% of f_c after peak stress concrete tensile strength rotation of section mid-span deflection at crack of concrete mid-span deflection at yield tensile reinforcement ratio bond stress
L _g L _p	distance over which average curvature or rotation is calculated equivalent length of plastic hinge	$ au_{ m max}$	maximum bond stress

cracking patterns [15–19]. For simplicity, only simply supported beams under three-point bending and monotonic loading are studied with the two-dimensional model for half beam (Fig. 1). As flexural deformation dominates in plastic hinges, shear dominant members with small aspect ratios (ratio of shear span length to depth of beam) are not considered in this work.

2.1. Modeling of concrete

The three-node triangular isoparametric plane stress element is adopted for concrete elements in the study. The mesh size is

Table 1					
Empirical	models	for	plastic	hinge	length.

Reference	Plastic hinge length (L_p)
Baker [2]	$c_0(z/d)^{1/4}d$ (for RC beams and columns)
I.C.E. Research Committee [3]	$c_1 c_2 c_3 (z/d)^{1/4} d$
Sawyer [4]	0.25d + 0.075z
Corley [5]	$0.5d + 0.2\sqrt{d}(z/d)$ (for RC beams)
Mattock [6]	0.5d + 0.05z (for RC beams)
Priestley and Park [7]	$0.08z + 6d_b$ (for RC columns)
Paulay and Priestley [8]	$0.08z + 0.022d_b f_y$ (for RC beams and columns)
Sheikh and Khoury [9]	1.0h (for columns under high axial loads)
Coleman and Spacone [10]	$G_{f}^{c}/\left[0.6f_{c}\left(\varepsilon_{2}0-\varepsilon_{c}+0.8f_{c}^{\prime}/E_{c}\right)\right]$
Panagiotakos and Fardis [11]	$0.18z + 0.021d_b f_v$ (for RC beams and columns)
Bae and Bayrak [12,13]	$h\{[0.3(p/p_o) + 3(A_s/A_g) - 1](z/h) + 0.25\} \ge$
	0.25h (for columns)

generally to be 10–20 mm, which is close to the size of the aggregate.

2.1.1. Tensile behavior of concrete

The rotating smeared crack model with total strain concept is adopted for the nonlinear tension softening behavior of concrete [19,20]. Softening is assumed to be exponential, as illustrated in Fig. 2(a); details are available in DIANA User's Manual [21]. The main parameters for this softening curve are tensile strength of concrete f_t , tensile fracture energy G_f^l , and crack bandwidth h_b .

In this work, fracture energy G_f^{I} of concrete is calculated according to the CEB-FIP Model Code 1990 [22]:

$$G_f^l = G_f^0 (f_c / 10)^{0.7}, (1)$$

where the value of G_f^0 depends on the maximum aggregate size d_{max} ; and the crack bandwidth is taken as $\sqrt{2A}$, in which *A* is the total area of the element. The maximum aggregate size is assumed to be 16 mm.

2.1.2. Compressive behavior of concrete

Mander et al.'s stress-strain model [23] is adopted for both confined and unconfined concrete. A typical stress-strain envelope for unconfined concrete is depicted in Fig. 2(b) and the corresponding equation is:

$$\sigma_c = \frac{f_{co} x r}{r - 1 + x^r},\tag{2}$$

Download English Version:

https://daneshyari.com/en/article/267640

Download Persian Version:

https://daneshyari.com/article/267640

Daneshyari.com