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a b s t r a c t

An energy-basedmethodwas developed for quantifying shear lag effects in thin-walled flexuralmembers
such as box girders, T-beams, and nonrectangular concrete walls. The proposed procedure uses infinite
terms of high-order polynomial to describe the uneven longitudinal displacement in the flanges. The
series type of approximation resulted in a group of coupled differential equations, for which solution
techniques were developed. The proposed variational analysis was compared with the existing least-
work solutions and two experimental tests of rectangular box girders in the literature and one of tests
of steel box beams in this study. The comparisons indicated that the proposed variational analysis can
accurately predict the flange normal stresses in box girders. Solutions were provided for thin-walled
flexuralmembers in bridges andbuildings under a variety of loadings andboundary conditions to facilitate
the implementation of the proposed procedure.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The shear lag effect in this paper describes the unevenly
distributed normal stress in the flange of a thin-walled flexural
member, as shown in Fig. 1. Due to shear lag effects, the structural
behavior can be different from that predicted by the elementary
beam theory, which assumes that the normal stress in a slender
beam is proportional to the distance from the neutral axis. Shear
lag has been identified and studied inmany engineering structures,
including airplane structures [1–3], high-rise buildings [4–6],
composite beams [7–12], and box girder bridges [13–15]. Two
concepts, effective flange width [10–12,16,17] and stress increase
factor [9,18,19], are widely used in engineering design practices.
Effective flange width is the partial flange in tension/compression,
with which the largest normal stress in a thin-walled flexural
member can be obtained following the elementary beam theory.
The stress increase factor modifies the normal stress calculated
using the original cross section and the elementary beam theory
such that the peak normal stress in the flange can be obtained
for design. The determination of both design parameters requires
an accurate normal stress distribution across the flanges of thin-
walled flexural members.

The existing shear lag analysis techniques include analyti-
cal procedures (e.g., the finite stringer method [20,21], the bi-
harmonic analysis [1,9,22], and energy-based analyses [2,6,14,
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18,23,24]), numerical analyses [10–13,17,19], and experimental
tests [18,25]. The results of energy-based analyses have been used
in the design of box girder bridges and high-rise buildings [5,6,14,
26]. In the existing energy-based analysis, the longitudinal flange
displacement is described using a quadratic or cubic polynomial
term with one unknown parameter. The variational principle is
applied to the potential energy of the member to determine the
unknown parameter. The accuracy of the energy-based analyses
is thus limited by the ability of the assumed polynomial to ap-
proach the longitudinal displacement across the flanges, which
varies along the member as observed in several studies [19,27].

A 2m-degree polynomial (the summation of m terms of
binomialswith even exponents)was used in this study to approach
the actual longitudinal displacement in the flanges of thin-walled
flexural members with various boundary conditions and loadings.
The proposed series type of approximation resulted in a group
of coupled differential equations, for which solution techniques
were developed by solving an eigenvalue problem. This procedure
is described below following a review of the existing analysis
techniques. The analyses of two steel box girders tested and
documented in the literature and a steel box beam in this study
were used to demonstrate the effectiveness of the proposed
procedures.

2. Literature review

Analytical procedures are needed to provide guidance for
experimental tests and numerical studies. Among the existing
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Notation

Af , Aw, A Area of the flange, the web and the cross section of
a box girder

As Area of stiffeners on the compression flange
b1, b2, b3 Half width of bottom flange and top flange, and

overhanging flange width
be Effective flange width
bl Width of the distributed load equivalent to the

applied point load
dj, ej Coefficients in the matrix Uh
f1 Geometrical parameter
E,G Young’s modulus, shear modulus
h, L Height and the span of the box girder
Is, Iw, I Moment of inertia of the flanges, the webs and the

box girder
n, k Two parameters defined by Reissner
M, V Moment and shear in the flexural member
M ′ Derivative of the moment with respect to x
P, a Point load and the position of the load
Qw First moment of the web
q, qo Uniformly distributed load, and the peak of the

triangular loads
t1, t2, t3, tw Thickness of bottom flange, top flange, can-

tilever flange, and web plate
u(x, y) Normal flange displacement of a box girder
Ui(x),U ′

i (x) Parameter for the ith term and its first derivative
in the polynomial function

Uh,Up Homogeneous solution and particular solution of
unknown parameters

ψ Effective flange width ratio (ψ = be/b)
αs Timoshenko shear coefficient
σx, εx Normal stress and normal strain of a box girder
ν Poisson’s ratio of girder material
ϕ(x), ϕ′(x) Curvature of the girder and the first derivative of

the curvature
λi,Φi Eigenvalue and the eigenvector for the ith term of

Ui(x)
γxy, τxy, τxz Shear strain and shear stress in xy-plane, shear

stress in xz-plane

analytical procedures, stress in the flange is obtained by solving
the partial differential equation using the method of separation of
variables and applying the boundary conditions at member ends.
For example, the flange normal stress (σx) for a simply supported
box girder subjected to a point load as shown in Fig. 2 is,

σx =

∞−
k=1

Pbh sin λa sin λbl sin λx
Iblλ2L (2bλ+ sinh 2λb)

[−2λb sinh λb cosh λy

+ 2 cosh λb(2 cosh λy + yλ sinh λy)] , (1)

where λ = kπ/L for simply supported girders, h is the distance
from the center of the flange to the neutral axis, b is the half flange
width, and bl is the width of a patch load that is equivalent to the
point load P placed at x = a from the left support.

The force boundary conditions along the flange sides are de-
termined by the equilibrium of the flange plate: the shear stress
(τyx) is assumed to balance the normal stresses across the flange
(σx). This normal stress is usually obtained using the elementary
beam theory, leading to amistaken presumption that the resultant
of the normal stress across the flange is the same as those obtained
without considering shear lag effects. With the presumption, the
shear stress (τyx) along the flange sides takes the same shape as the
shear diagram, which is then approximated using a Fourier series

Fig. 1. Schematics of shear lag effects in a box girder.

Fig. 2. Bi-harmonic analysis of isolated flange plate.

before being used in the solution of the bi-harmonic equation. A
Fourier series converges with sufficient accuracy for girders under
distributed loads. However, it is difficult for a Fourier series to ac-
curately approach the shear diagram of a girder with a point load,
where a discontinued point exists at the position of the load. The
discontinuity causes Gibbs phenomenon [28,29] in the Fourier se-
ries near the load point. Although several methods are available
to reduce the Gibbs effect (e.g., Fejer summation [28] and sigma-
approximation [29]) in a truncated Fourier series, excessive num-
ber of terms are needed in the summation of the Fourier series to
obtain accuracy stable solution. Furthermore, a convergence prob-
lem exists in the solution near a point load; hence the point load is
usually approached with a short distributed load [1,9,22]

Unlike bi-harmonic analysis, which ignores member geometry
and material properties as shown in Eq. (1), the energy-based
method establishes equations using the potential energy of the
entire member. The necessary assumption is that shear lag effects
on longitudinal flangedisplacement,u(x, y), can bedescribedusing
a second-order (or third-order) binomial,

u(x, y) = ±h
[
w′(x)+


1 −

y2

b2


U(x)

]
, (2)

where, w′(x) is the derivative of the beam deflection, h is the
distance of the center of the flange to the neutral axis, which has
been usually set at the middle height for a rectangular box section,
b is the half flange width, and U(x) is the unknown parameter.
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