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a b s t r a c t

The dynamic response of saddle-form cable nets is investigated in this paper. Even though they consist
of cables, which are well known for their geometric nonlinearity, such systems could be characterized as
weakly nonlinear due to the high levels of pretensioning of their cables and to their hyperbolic paraboloid
surface, having opposite curvatures at all points and thus increased stiffness. Nevertheless, resonance
phenomena that are typical of highly nonlinear systems are detected here, for common geometries and
levels of pretension, even for low levels of load amplitude. First, a single-degree-of-freedom (SDOF) cable
net is studied analytically and numerically, and nonlinear resonances are confirmed. Then, the response of
multi-degree-of-freedom (MDOF) cable nets, subjected to harmonic dynamic excitation, is investigated.
Although the static response is proved to be almost linear, the dynamic nonlinearity is intense, as verified
by jump phenomena, bending of the response curve, superharmonic resonances, and dependence on the
initial conditions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cable nets belong to the family of tensile structures that are
characterized by their capacity to carry loads much heavier than
their own weight. The most common shape of cable nets is the
hyperbolic paraboloid. The net consists of two families of cables:
the carrying or main cables that produce the concave surface,
which are anchored at the highest points of the boundary, and
the stabilizing or secondary ones, which, anchored at the lowest
points of the boundary, create the convex surface. Cable structures
differ from conventional linear systems, due to their nonlinear
response to both static and dynamic actions. Their response cannot
be obtained on the basis of their original undeformed geometry,
because their stiffness increases as the deflection increases, and
the internal forces do not vary linearly with load. Therefore, it is
necessary to take into consideration the deformed state at every
step of the load, performing nonlinear analyses, which account for
large displacements.

The dynamic response of a nonlinear system is unpredictable, as
several nonlinear phenomena may appear, such as secondary res-
onances, including superharmonic and subharmonic resonances,

∗ Corresponding author. Tel.: +30 210 6141055; fax: +30 210 7723442.
E-mail addresses: isabella@central.ntua.gr (I. Vassilopoulou),

chgantes@central.ntua.gr (C.J. Gantes).
1 Tel.: +30 210 7723440; fax: +30 210 7723442.

depending on the relation between the loading frequency Ω and
the eigenfrequencies ωi of the system. If Ω ≈ n ·ωi or Ω ≈ (1/n) ·

ωi, where n is an integer, subharmonic or superharmonic reso-
nance may occur, respectively. In such cases, all modes involved
in the secondary resonances are activated during the oscillation
[1,2]. The relation between oscillation amplitude and frequency
can be described by a response diagram, in which the steady-state
amplitude is plotted on the vertical axis and the frequency ratio
Ω/ω on the horizontal axis, where Ω is the loading frequency and
ω the natural frequency of the system. For a free vibration of an
undamped oscillator, the steady-state response is described by one
line, known as the backbone. For a forced system, the steady-state
response is represented by different curves, depending on the am-
plitude of the external force. These curves can be interpreted as
perturbations out of the equilibrium state. In linear systems, the
backbone is a straight vertical line and the response curves for
the forced systems approach this line asymptotically, as the forc-
ing frequency Ω approaches the system’s frequency ω, indicating
the phenomenon of fundamental resonance, in which the vibra-
tion amplitude increases infinitely when the force has the same
frequency as the system. In nonlinear systems instead, the back-
bone is a bending curve accounting for either the softening or the
hardening behavior of the system (Fig. 1). The softening behavior
means that the stiffness of the system decreases as the oscillation
amplitude increases, while in the hardening behavior the system’s
stiffness becomes progressively higher for large amplitudes [3].

Several studies have been published in the past regarding non-
linear dynamic phenomena for individual cables [4–6], while some

0141-0296/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2011.06.001

http://dx.doi.org/10.1016/j.engstruct.2011.06.001
http://www.elsevier.com/locate/engstruct
http://www.elsevier.com/locate/engstruct
mailto:isabella@central.ntua.gr
mailto:chgantes@central.ntua.gr
http://dx.doi.org/10.1016/j.engstruct.2011.06.001


I. Vassilopoulou, C.J. Gantes / Engineering Structures 33 (2011) 2762–2771 2763

Fig. 1. Amplitude–frequency curves for undamped systems with (a) softening nonlinear behavior, (b) linear behavior, and (c) hardening nonlinear behavior.

recent findings and experimental results are included in [7,8].
However, only a few investigators have dealt with such phe-
nomena for cable net structures. Most publications referring
to cable nets have presented computerized methods of anal-
ysis and other numerical techniques to calculate the nonlin-
ear static or dynamic response of cable networks and mem-
branes by solving the governing equations of motion [9–13].
In [14], the two most common methods of analysis for cable
roof structures subjected to wind actions were proposed to be
used, which are the frequency domain analysis and the time
domain analysis. The former method, commonly used for lin-
ear structures, can be applied for approximating the response of
weakly nonlinear structures. For strongly nonlinear structures,
time domain analyses, taking into account the geometrical nonlin-
earity, were recommended as the only appropriate method.

During the initial stages of the present work, the dynamic
behavior of an undamped cable net with fixed supports under
fundamental resonance was explored in [15], and internal
resonances were detected, indicated by the beat phenomena in
the oscillation of the net. On the other hand, in [16], the dynamic
behavior of a damped saddle-form cable net with rigid supports
subjected to a uniformly distributed load was analyzed for a
wide range of the loading frequency, concluding that it is never
sufficient to take into consideration only the first natural modes,
as fundamental resonances of higher modes may lead to cable net
oscillations of large amplitudes, comparable to those generated by
the fundamental resonance of the first symmetric mode.

In the present work, first, the analytical equations ofmotion are
given for the simplest cable net, consisting of two crossing cables.
The central node is subjected to a harmonic load, with varying
frequency. Bending of the response curve, double responses
dependent on the initial conditions, jump, and superharmonic
resonances are detected. Then, amulti-degree-of-freedom (MDOF)
cable net is considered, with fixed cable ends, taking as an example
the cable net roof of the Peace and Friendship Stadium in Athens,
Greece [17], shown in Fig. 2. The dynamic response of the cable
net, subjected to harmonic excitations with a uniform spatial
distribution, is investigated. As analytical solutions turned out to
be practically impossible for full-scale three-dimensional cable
structures due to their complex nonlinearity, numerical analyses
are performed, using finite element software, which is validated
for the simple cable net.

This investigation aims at evaluating the nonlinear nature
of cable nets, through the occurrence of nonlinear dynamic
phenomena, in order to assess if they can be treated as weakly
nonlinear systems and if they can be reliably analyzed by linear
quasi-static procedures.

2. Equations of motion of a simple model of a cable net

A simple structure of two crossing systems of prestressed pin-
ended bars (not undergoing compression) is assumed (Fig. 3),
which is referred to in the following as a system of two crossing

Fig. 2. The stadium of Peace and Friendship in Athens under construction.

Fig. 3. Geometry of the simple cable net with two cables.

cables, having equal spans L and sags f , and the same cross
sectional area A, made of linear elastic material in tension, with
Young modulus E and initial elongation ε0, which is interpreted as
initial pretension T0, according to Hooke’s law:
T0 = EAε0. (1)
The material is assumed to have zero compression branch. A
concentrated mass is applied on the central node. The initial
prestressed length of each segment is

SN =


(L/2)2 + f 2. (2)

If the displacements of the central node, referring to the global
axes x, y, z, are defined as wx, wy, wz , respectively, the deformed
lengths of the cable segments will be

S1,2 =


(L/2 ± wx)

2
+ w2

y + (f + wz)
2

S3,4 =


w2

x +

L/2 ± wy

2
+ (f − wz)

2.

(3)

According to Hooke’s law, and assuming small strains, the cable
tension for each segment will be
Ti = E · A · (Si − S0)/S0

= T0 + (E · A · (Si − SN)/S0), i = 1, 2, 3, 4. (4)
S0 is the initial unstressed length for all segments, equal to

S0 =
SN

1 + ε0
. (5)
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