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a b s t r a c t

In this paper, the effect of combined uncertain material (Young’s modulus, Poisson’s ratio) and geometric
(thickness) properties on the response variability of cylindrical shells is investigated taking into account
various non-Gaussian assumptions for the uncertain parameters. These parameters are described by two-
dimensional univariate homogeneous non-Gaussian stochastic fields using the spectral representation
method in conjunction with translation field theory. The response variability is computed by means
of direct Monte Carlo simulation (MCS). It is shown that the marginal probability distribution and the
correlation scale of the stochastic fields used for the description of the material and thickness variability
affect significantly the shell response statistics.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A powerful tool in computational stochastic mechanics is the
stochastic finite element method (SFEM). SFEM is an extension of
the classical deterministic FE approach to the stochastic framework
i.e. to the solution of stochastic problems whose (material and ge-
ometric) properties are randomwith the FEmethod. The consider-
able attention that SFEM received over the last two decades can be
mainly attributed to the understanding of the significant influence
of the inherent uncertainties on systems’ behavior and to the dra-
matic increase of computational power in recent years, permitting
the efficient treatment of complex realistic problems with uncer-
tainties [1,2].

A characteristic example of structures with a complex stochas-
tic response is that of shell structures. The analysis and design of
shells are challenging since their behavior can be unpredictable
with regard to geometry or support conditions. In particular, the
extreme sensitivity of thin shells to imperfections in material, ge-
ometry and boundary conditions requires a realistic description of
all uncertainties involved in the problem. This task is realizable
only in the framework of a robust SFEM formulation that can accu-
rately and efficiently handle material and geometric uncertainties.
The need for a robust, accurate and computationally efficient shell
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element becomes even greater for the computationally expensive
SFE analysis of large realistic shell structures.

The TRIC (TRIangular Composite) shear-deformable facet shell
element is a reliable and cost-effective triangular element suitable
for the linear and nonlinear analysis of thin and moderately thick
isotropic as well as composite plate and shell structures [3]. Its
formulation is based on the natural mode finite element method,
which has a number of computational advantages compared to
the conventional isoparametric finite element formulations. The
treatment of the element kinematics (inclusion of the transverse
shear deformations in its formulation based on a first order shear-
deformable beam theory) eliminates locking phenomena in a
physical manner. The rigorous theoretical basis of the element has
been confirmed in several publications, while numerical examples
have verified its accuracy and computational efficiency in various
structural applications [3–5]. An important feature of the TRIC
element in the context of stochastic analysis is the fact that there
is no need to perform numerical integration for the computation
of its deterministic stiffness matrix, which is carried out in closed
form. This special feature of the TRIC element provides an ideal
basis for the formulation of a computationally efficient stochastic
stiffness matrix and for the use of the element in large-scale
stochastic computations.

In most SFEM applications, a straightforward randomization of
only one material property is performed by assuming that this
property is described by a stochastic field, e.g. [6–10]. For exam-
ple, the Young’s modulus is often assumed to vary randomly over
space, while the Poisson’s ratio is considered as a deterministic
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constant. However, many of the physical mechanisms that lead
to random variations of Young’s modulus also lead to random
variations in other material properties such as Poisson’s ratio. A
formulation for the SFE analysis of plate structures with an uncer-
tain Poisson’s ratio has been proposed in [10]. This formulation is
based on a decomposition of the constitutive matrix into several
sub-matrices via polynomial expansion of the Poisson’s ratio and
is combined with a first order Taylor expansion for the calculation
of the response statistics. An alternative SFE approach account-
ing for secondary effects due to material randomness has been in-
troduced in [11]. In this approach, stochastic shape functions are
computed based on local equilibrium criteria and the stochastic
stiffness matrix is calculated using the corresponding stochastic
strain–displacement matrix. High accuracy is achieved with this
SFE technique, which is preserved in the case of a large stochastic
variation of the input parameters. The case of multiple uncertain
material and/or geometric properties represented by random vari-
ables or random fields is treated in a few publications [12–19].

In all the aforementioned publications, a Gaussian assumption
ismade for the randomvariables or random fields representing the
uncertain parameters of the problem. However, the use of the nor-
mal distribution formaterial and geometric properties bounded by
physical constraints is questionable especially in the case of large
coefficients of variation as there is a non-zero probability that a
violation of these constraints might occur. Moreover, it has been
shown in [20] that the variance of the response of a system with
Gaussian stiffness is infinite. Therefore, a non-Gaussian assump-
tion is more appropriate for a physically sound and accurate de-
scription of material and geometric properties [21].

In this paper, the effect of combined uncertain material
and geometric properties on the response variability of a thin
cylindrical shell is investigated taking into account various non-
Gaussian assumptions for the uncertain parameters. To this
purpose, a non-Gaussian spatial variability of the Young’s modulus
and Poisson’s ratio as well as of the thickness of the shell is
considered. These parameters are described by two-dimensional
univariate (2D-1V) homogeneous non-Gaussian stochastic fields
using the spectral representation method in conjunction with
translation field theory [22,23]. The stochastic stiffness matrix of
the TRIC shell element is based on the local average [24] and
weighted integral [6]methods anddepends on aminimumnumber
of random variables representing the stochastic fields.

The numerical example focuses on the influence of the non-
Gaussian assumption on the response variability of the shell
structure, which is quantified in terms of exceedance probabilities
by means of direct Monte Carlo simulation (MCS). The influence
of the variation of each random parameter, as well as of the
correlation scale of the stochastic fields, is also investigated.
It is shown that the marginal probability distribution used for
the description of the material and thickness variability affects
significantly the response statistics of the shell.

2. Stochastic finite element formulation

The stochastic finite element analysis is performed using
the multi-layered triangular shell element TRIC, the formulation
of which is based on the natural mode method. A schematic
representation of the element appears in Fig. 1. The element has
18 degrees of freedom (6 per node) and hence 12 natural straining
modes: 3 axial straining modes, 3 symmetric bending modes, 3
anti-symmetric bending + shear modes and 3 in-plane rotations.
Its natural stiffness is based only on deformations and not on
associated rigid-body motions. The 12 × 12 stiffness matrix kN
corresponding to the natural modes is denoted as the natural
stiffness matrix of the element. A detailed description of the
formulation of the deterministic linear elastic stiffness matrix of
the TRIC shell element can be found in [3].

Fig. 1. The multi-layered triangular shell element TRIC.

2.1. Random variation of the Young’s modulus and Poisson’s ratio

As the elements of the stiffness matrix are nonlinear functions
of Poisson’s ratio ν, the analysis of shell structures involving
both the stochastic Young’s modulus and Poisson’s ratio requires
the introduction of additional approximations. An alternative
weighted integral formulation of the stochastic stiffness matrix is
possible in this case, considering Lamé’s constants λ and µ as the
twouncertainmaterial properties since all elements of the stiffness
matrix are linear functions of λ and µ [13].

For the TRIC shell element and in the case of isotropic material,
the elasticity matrix κ12 in the material coordinate system can be
expressed as

κ12 =
E

1 − ν2

1 ν 0
ν 1 0
0 0 1 − ν


. (1)

The Lamé’s constants are defined as

λ =
νE

1 − ν2
, µ = G =

E
2(1 + ν)

. (2)

After some algebra, Eq. (1) becomes

κ12 =


λ + 2µ λ 0

λ λ + 2µ 0
0 0 2µ



=


λ λ 0
λ λ 0
0 0 0


  

κ12(λ)

+

2µ 0 0
0 2µ 0
0 0 2µ


  

κ12(µ)

= κ
(1)
12 + κ

(2)
12 . (3)

The two material properties are assumed to vary randomly
along the element surface Ω according to

λ(x, y) = λ0[1 + fλ(x, y)] (4a)
µ(x, y) = µ0[1 + fµ(x, y)] (4b)

where λ0, µ0 are the mean values of Lamé’s constants and fλ(x, y),
fµ(x, y) are 2D-1V zero-mean homogeneous stochastic fields
corresponding to the spatial variation of λ and µ respectively.
In this work, a non-Gaussian assumption is made for fλ, fµ as
described in Section 3.

Substituting Eqs. (4a), (4b) into the expression of the elasticity
matrix κ12, we have

κ12 = [κ
(1)
12 ]0[1 + fλ(x, y)] + [κ

(2)
12 ]0[1 + fµ(x, y)] (5)
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